如图,在平面直角坐标系xOy中,将抛物线的对称轴绕着点P(,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上的一点.
(1)求直线AB的函数表达式;
(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;
(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是直线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
如图,已知抛物线()的对称轴为直线,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴上的一个动点,求使△BPC为直角三角形的点P的坐标.
已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.
(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.
在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,直线经过,两点.
(1)求抛物线的解析式;
(2)在上方的抛物线上有一动点.
①如图1,当点运动到某位置时,以为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;21·cn·jy·com
②如图2,过点,的直线交于点,若,求的值.
如图,在矩形ABCD中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.
如图,在平面直角坐标系
中,直线
与
轴交于点
,与
轴交于点
.抛物线
的对称轴是
且经过
、
两点,与
轴的另一交点为点
.
(1)①直接写出点
的坐标;②求抛物线解析式.
(2)若点
为直线
上方的抛物线上的一点,连接
.求
的面积的最大值,并求出此时点
的坐标.
(3)抛物线上是否存在点
,过点
作
垂直
轴于点
,使得以点
、
、
为顶点的三角形与
相似?若存在,求出点
的坐标;若不存在,请说明理由.
本题满分9分.
九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件) |
100 |
110 |
120 |
130 |
… |
月销量(件) |
200 |
180 |
160 |
140 |
… |
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销售该运动服每件的利润是 元;②月销量是 件;(直接填写结果)
(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
如图,在平面直角坐标系中,抛物线经过点
,其对称轴与
轴交于点
.
(1)求此抛物线的解析式和对称轴;
(2)在此抛物线的对称轴上是否存在一点
,使
的周长最小?若存在,请求出点
的坐标;若不存在,请说明理由;
(3)连接AC,在直线
下方的抛物线上,是否存在一点
,使
的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
设抛物线()与x轴的交点为A(, 0),B(,0),且,其中,点P(a,b)为抛物线上一动点.
(1)求抛物线的解析式;
(2)连接AC,过P点做直线PE∥AC交x轴于点E,交y轴于点E(O,t),当a取何值时t有最大值,最大值是多少?
(3)判断在(2)的条件中是否存在一点P,使以点A、C、P、E为顶点的四边形为平行四边形.若不存在试说明理由;若存在,试求出点P的坐标.
如图,若二次函数的图像过点A(-1,0),C(0,),与x轴的另一交点为B,D为顶点.
(1)求m、n的值及B、D两点的坐标;
(2)若二次函数的图像的对称轴与x轴的交点为P,在线段BC上找一点Q,使得以点B、P、Q为顶点的三角形与△ABC相似,请求出所有符合条件的点Q坐标;
(3)将△ABC沿x轴向右平移t个单位长度(0<t<6),设平移后的△ABC与△PBD重叠的面积为S,请直接写出S 与t的函数关系式.
已知抛物线y=-x2-2x+a(a≠0)与y轴交于A,顶点为M,直线分别与x轴、y轴交于B、C两点,并且与直线MA相交于N点。
(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标;
(2)将△NAC沿着y轴翻折,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于D,连接CD。求a的值及△PCD的面积;
(3)在抛物线y=-x2-2x+a(a>0)上是否存在点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由。
在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.
(1)求点A,B的坐标;
(2)求抛物线C1的表达式及顶点坐标;
(3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.
已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果EF=2OG,求点G的坐标.
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
(本题8分)已知锐角△ABC中,边BC长为12,高AD长为8
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K
①求的值
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2)若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.
如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.
(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标:
(2)设点C的级坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y1的大小;
(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.
试题篮
()