如图,已知关于x的二次函数的图像经过原点O,并且与x轴交于点A,对称轴为直线x=1。若关于x的一元二次方程(k为常数)在–2<<3的范围内有解,则k的取值范围
在平面直角坐标系中,已知抛物线y=ax2-2x+c(a,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(﹣4,3),直角顶点B在第二象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,判断线段PQ的长度是否为定值?如果是,求出PQ的长;如果不是,说明理由;
(3)在(2)的条件下,若点M在直线AC下方,且为平移前(1)中的抛物线上的点,以M、P、Q三点为顶点的三角形是等腰直角三角形,求出所有符合条件的点M的坐标.
在平面直角坐标系中,O为坐标原点,抛物线y=-x2+kx+4与y轴交于A,与x轴的负半轴交于B,且△ABO的面积是8.
(1)求点B的坐标和此二次函数的解析式;
(2)当y≤4时,直接写出x的取值范围.
已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:
x |
… |
﹣1 |
0 |
1 |
3 |
4 |
… |
y |
… |
8 |
|
0 |
0 |
|
… |
(1)抛物线的对称轴是_________ .点A(______,____),B(_____,_____);
(2)求二次函数y=ax2+bx+3的解析式;
(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?
某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x |
30 |
32 |
34 |
36 |
y |
40 |
36 |
32 |
28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式;(不写出自变量x的取值范围)
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
已知:抛物线(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,),与x轴交于A、B两点(A在B的左边).
(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=1,求y1与x的函数关系式,并写出自变量x的取值范围;
(3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由;
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.
如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
如图,抛物线交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N.
(1)求点A,B的坐标;
(2)证明:OP=PC
如图,在平面直角坐标系中,已知抛物线经过,两点,顶点为.
(1)求、的值;
(2)将绕点顺时针旋转90°后,点A落到点C的位置,该抛物线沿轴上下平移后经过点,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足△的面积是△面积的3倍,求点的坐标.
根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.
(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?
有一个二次函数的图象,三位学生分别说出了它的一些特点.
甲:对称轴是直线x=4;
乙:与x轴两交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;
请写出满足上述全部特点的二次函数解析式: .
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点且S△ABC=6
(1)求点B的坐标和抛物线的解析式;
(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;
②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?
某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?
试题篮
()