△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为( )
A. B. C. D.
如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.
如图所示,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC的周长为26,BC=6,求△BCD的周长.
如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.
如图,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF= .
如图点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为( )
A.5.5 B.4 C.4.5 D.3
把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )
A.120° | B.125° | C.130° | D.140° |
等腰三角形的一条边长为6,另一边长为13,则它的周长为( )
A.25 | B.25或32 | C.32 | D.19 |
如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
探索与研究:
方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以
∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;
方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.
如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.
已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为____ ___.
试题篮
()