优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 计算题
初中数学

甲数的等于乙数的,乙数是60,甲数是多少?

  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 的图象经过点 A ( - 2 , 0 ) ,点 B ( 4 , 0 ) ,点 D ( 2 , 4 ) ,与 y 轴交于点 C ,作直线 BC ,连接 AC CD

(1)求抛物线的函数表达式;

(2) E 是抛物线上的点,求满足 ECD = ACO 的点 E 的坐标;

(3)点 M y 轴上且位于点 C 上方,点 N 在直线 BC 上,点 P 为第一象限内抛物线上一点,若以点 C M N P 为顶点的四边形是菱形,求菱形的边长.

来源:2016年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

(本题13分)如图,抛物线y= -x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)

(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC = 3 ,动点 P B 出发,以每秒1个单位的速度,沿射线 BC 方向移动,作 ΔPAB 关于直线 PA 的对称 ΔPAB ' ,设点 P 的运动时间为 t ( s )

(1)若 AB = 2 3

①如图2,当点 B ' 落在 AC 上时,显然 ΔPAB ' 是直角三角形,求此时 t 的值;

②是否存在异于图2的时刻,使得 ΔPCB ' 是直角三角形?若存在,请直接写出所有符合题意的 t 的值?若不存在,请说明理由.

(2)当 P 点不与 C 点重合时,若直线 PB ' 与直线 CD 相交于点 M ,且当 t < 3 时存在某一时刻有结论 PAM = 45 ° 成立,试探究:对于 t > 3 的任意时刻,结论“ PAM = 45 ° ”是否总是成立?请说明理由.

来源:2019年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

化简下列各式:
(1);   
(2)

  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - 3 5 [ ( x - 2 ) 2 + n ] x 轴交于点 A ( m - 2 , 0 ) B ( 2 m + 3 , 0 ) (点 A 在点 B 的左侧),与 y 轴交于点 C ,连接 BC

(1)求 m n 的值;

(2)如图2,点 N 为抛物线上的一动点,且位于直线 BC 上方,连接 CN BN .求 ΔNBC 面积的最大值;

(3)如图3,点 M P 分别为线段 BC 和线段 OB 上的动点,连接 PM PC ,是否存在这样的点 P ,使 ΔPCM 为等腰三角形, ΔPMB 为直角三角形同时成立?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2016年山东省日照市中考数学试卷
  • 题型:未知
  • 难度:未知

(每小题3分,共6分)计算:
(1)     
(2)

  • 题型:未知
  • 难度:未知

如图,已知直线 y = 1 2 x + 1 2 与抛物线 y = a x 2 + bx + c 相交于 A ( - 1 , 0 ) B ( 4 , m ) 两点,抛物线 y = a x 2 + bx + c y 轴于点 C ( 0 , - 3 2 ) ,交 x 轴正半轴于 D 点,抛物线的顶点为 M

(1)求抛物线的解析式及点 M 的坐标;

(2)设点 P 为直线 AB 下方的抛物线上一动点,当 ΔPAB 的面积最大时,求此时 ΔPAB 的面积及点 P 的坐标;

(3)点 Q x 轴上一动点,点 N 是抛物线上一点,当 ΔQMN ΔMAD (点 Q 与点 M 对应),求 Q 点坐标.

来源:2018年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

若一次函数 y = - 3 x - 3 的图象与 x 轴, y 轴分别交于 A C 两点,点 B 的坐标为 ( 3 , 0 ) ,二次函数 y = a x 2 + bx + c 的图象过 A B C 三点,如图(1).

(1)求二次函数的表达式;

(2)如图(1),过点 C CD / / x 轴交抛物线于点 D ,点 E 在抛物线上 ( y 轴左侧),若 BC 恰好平分 DBE .求直线 BE 的表达式;

(3)如图(2),若点 P 在抛物线上(点 P y 轴右侧),连接 AP BC 于点 F ,连接 BP S ΔBFP = m S ΔBAF

①当 m = 1 2 时,求点 P 的坐标;

②求 m 的最大值.

来源:2020年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OADB 的顶点 A B 的坐标分别为 A ( - 6 , 0 ) B ( 0 , 4 ) .过点 C ( - 6 , 1 ) 的双曲线 y = k x ( k 0 ) 与矩形 OADB 的边 BD 交于点 E

(1)填空: OA =           k =         ,点 E 的坐标为         

(2)当 1 t 6 时,经过点 M ( t - 1 , - 1 2 t 2 + 5 t - 3 2 ) 与点 N ( - t - 3 , - 1 2 t 2 + 3 t - 7 2 ) 的直线交 y 轴于点 F ,点 P 是过 M N 两点的抛物线 y = - 1 2 x 2 + bx + c 的顶点.

①当点 P 在双曲线 y = k x 上时,求证:直线 MN 与双曲线 y = k x 没有公共点;

②当抛物线 y = - 1 2 x 2 + bx + c 与矩形 OADB 有且只有三个公共点,求 t 的值;

③当点 F 和点 P 随着 t 的变化同时向上运动时,求 t 的取值范围,并求在运动过程中直线 MN 在四边形 OAEB 中扫过的面积.

来源:2018年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = - 2 3 x 2 + 7 3 x - 1 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ,其顶点为 D .将抛物线位于直线 l : y = t ( t < 25 24 ) 上方的部分沿直线 l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ M ”形的新图象.

(1)点 A B D 的坐标分别为                       

(2)如图①,抛物线翻折后,点 D 落在点 E 处.当点 E ΔABC 内(含边界)时,求 t 的取值范围;

(3)如图②,当 t = 0 时,若 Q 是“ M ”形新图象上一动点,是否存在以 CQ 为直径的圆与 x 轴相切于点 P ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2018年湖北省仙桃市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线交 x 轴于 A B 两点,交 y 轴于 C 点, A 点坐标为 ( - 1 , 0 ) OC = 2 OB = 3 ,点 D 为抛物线的顶点.

(1)求抛物线的解析式;

(2) P 为坐标平面内一点,以 B C D P 为顶点的四边形是平行四边形,求 P 点坐标;

(3)若抛物线上有且仅有三个点 M 1 M 2 M 3 使得△ M 1 BC 、△ M 2 BC 、△ M 3 BC 的面积均为定值 S ,求出定值 S M 1 M 2 M 3 这三个点的坐标.

来源:2018年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中, O 为原点,点 A B 分别在 y 轴、 x 轴的正半轴上. ΔAOB 的两条外角平分线交于点 P P 在反比例函数 y = 9 x 的图象上. PA 的延长线交 x 轴于点 C PB 的延长线交 y 轴于点 D ,连接 CD

(1)求 P 的度数及点 P 的坐标;

(2)求 ΔOCD 的面积;

(3) ΔAOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.

来源:2019年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 3 x 2 + bx + c 经过 ΔABC 的三个顶点,其中点 A ( 0 , 1 ) ,点 B ( - 9 , 10 ) AC / / x 轴,点 P 是直线 AC 下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点 P 且与 y 轴平行的直线 l 与直线 AB AC 分别交于点 E F ,当四边形 AECP 的面积最大时,求点 P 的坐标;

(3)当点 P 为抛物线的顶点时,在直线 AC 上是否存在点 Q ,使得以 C P Q 为顶点的三角形与 ΔABC 相似,若存在,求出点 Q 的坐标,若不存在,请说明理由.

来源:2016年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

100﹣98+96﹣94+92﹣90+…+76﹣74+72=

  • 题型:未知
  • 难度:未知

初中数学计算题