抛物线 经过点 ,与它的对称轴直线 交于点 .
(1)直接写出抛物线 的解析式;
(2)如图1,过定点的直线 与抛物线 交于点 、 .若 的面积等于1,求 的值;
(3)如图2,将抛物线 向上平移 个单位长度得到抛物线 ,抛物线 与 轴交于点 ,过点 作 轴的垂线交抛物线 于另一点 . 为抛物线 的对称轴与 轴的交点, 为线段 上一点.若 与 相似,并且符合条件的点 恰有2个,求 的值及相应点 的坐标.
如图,已知抛物线 的顶点 在 轴上,并过点 ,直线 与 轴交于点 ,与抛物线 的对称轴 交于点 ,过 点的直线 与直线 相交于点 .
(1)求抛物线 的解析式;
(2) 是 上的一个动点,若以 , , 为顶点的三角形的周长最小,求点 的坐标;
(3)抛物线 上是否存在一动点 ,使以线段 为直径的圆恰好经过点 ?若存在,求点 的坐标;若不存在,请说明理由.
已知正方形ABCD的边长为a,两对角线相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.
(1)如图(1),当P在线段AB上时,求PE+PF的值.
(2)如图(2),当P在线段AB的延长线上时,求PE-PF的值.
如图①,抛物线 与 轴交于 , 两点(点 位于点 的左侧),与 轴交于点 .已知 的面积是6.
(1)求 的值;
(2)求 外接圆圆心的坐标;
(3)如图②, 是抛物线上一点, 为射线 上一点,且 、 两点均在第三象限内, 、 是位于直线 同侧的不同两点,若点 到 轴的距离为 , 的面积为 ,且 ,求点 的坐标.
在平面直角坐标系 中,抛物线 过 , 两点.
(1)试求抛物线的解析式;
(2)记抛物线顶点为 ,求 的面积;
(3)若直线 向上平移 个单位所得的直线与抛物线段 (包括端点 、 部分有两个交点,求 的取值范围.
在平面直角坐标系 中,规定:抛物线 的伴随直线为 .例如:抛物线 的伴随直线为 ,即 .
(1)在上面规定下,抛物线 的顶点坐标为 ,伴随直线为 ,抛物线 与其伴随直线的交点坐标为 和 ;
(2)如图,顶点在第一象限的抛物线 与其伴随直线相交于点 , (点 在点 的左侧),与 轴交于点 , .
①若 ,求 的值;
②如果点 是直线 上方抛物线上的一个动点, 的面积记为 ,当 取得最大值 时,求 的值.
若一次函数 的图象与 轴, 轴分别交于 , 两点,点 的坐标为 ,二次函数 的图象过 , , 三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点 作 轴交抛物线于点 ,点 在抛物线上 轴左侧),若 恰好平分 .求直线 的表达式;
(3)如图(2),若点 在抛物线上(点 在 轴右侧),连接 交 于点 ,连接 , .
①当 时,求点 的坐标;
②求 的最大值.
如图,在平面直角坐标系中,矩形 的顶点 , 的坐标分别为 , .过点 的双曲线 与矩形 的边 交于点 .
(1)填空: , ,点 的坐标为 ;
(2)当 时,经过点 与点 的直线交 轴于点 ,点 是过 , 两点的抛物线 的顶点.
①当点 在双曲线 上时,求证:直线 与双曲线 没有公共点;
②当抛物线 与矩形 有且只有三个公共点,求 的值;
③当点 和点 随着 的变化同时向上运动时,求 的取值范围,并求在运动过程中直线 在四边形 中扫过的面积.
抛物线 与 轴交于点 , (点 在点 的左侧),与 轴交于点 ,其顶点为 .将抛物线位于直线 上方的部分沿直线 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ ”形的新图象.
(1)点 , , 的坐标分别为 , , ;
(2)如图①,抛物线翻折后,点 落在点 处.当点 在 内(含边界)时,求 的取值范围;
(3)如图②,当 时,若 是“ ”形新图象上一动点,是否存在以 为直径的圆与 轴相切于点 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线交 轴于 、 两点,交 轴于 点, 点坐标为 , , ,点 为抛物线的顶点.
(1)求抛物线的解析式;
(2) 为坐标平面内一点,以 、 、 、 为顶点的四边形是平行四边形,求 点坐标;
(3)若抛物线上有且仅有三个点 、 、 使得△ 、△ 、△ 的面积均为定值 ,求出定值 及 、 、 这三个点的坐标.
如图,平面直角坐标系中, 为原点,点 、 分别在 轴、 轴的正半轴上. 的两条外角平分线交于点 , 在反比例函数 的图象上. 的延长线交 轴于点 , 的延长线交 轴于点 ,连接 .
(1)求 的度数及点 的坐标;
(2)求 的面积;
(3) 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.
如图,已知抛物线 经过 的三个顶点,其中点 ,点 , 轴,点 是直线 下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点 且与 轴平行的直线 与直线 、 分别交于点 、 ,当四边形 的面积最大时,求点 的坐标;
(3)当点 为抛物线的顶点时,在直线 上是否存在点 ,使得以 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标,若不存在,请说明理由.
试题篮
()