如图,已知抛物线 经过点 , 和 . 垂直于 轴,交抛物线于点 , 垂直与 轴,垂足为 , 是抛物线的对称轴,点 是抛物线的顶点.
(1)求出二次函数的表达式以及点 的坐标;
(2)若 沿 轴向右平移到其直角边 与对称轴 重合,再沿对称轴 向上平移到点 与点 重合,得到 △ ,求此时 △ 与矩形 重叠部分的图形的面积;
(3)若 沿 轴向右平移 个单位长度 得到 △ , △ 与 重叠部分的图形面积记为 ,求 与 之间的函数表达式,并写出自变量 的取值范围.
如图,在直角坐标系中,直线 与反比例函数 的图象交于关于原点对称的 , 两点,已知 点的纵坐标是3.
(1)求反比例函数的表达式;
(2)将直线 向上平移后与反比例函数在第二象限内交于点 ,如果 的面积为48,求平移后的直线的函数表达式.
为加快城市群的建设与发展,在 , 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的 缩短至 ,城际铁路的设计平均时速要比现行的平均时速快 ,运行时间仅是现行时间的 ,求建成后的城际铁路在 , 两地的运行时间.
为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位: ),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:
组别 |
分组 |
频数(人数) |
频率 |
1 |
|
0.16 |
|
2 |
|
20 |
|
3 |
|
0.28 |
|
4 |
|
6 |
|
5 |
|
(1)将表中空格处的数据补全,完成上面的频数、频率分布表;
(2)请在给出的平面直角坐标系中画出相应的频数直方图;
(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于 ?
如图,在平面直角坐标系中,已知 的三个顶点的坐标分别为 , , .
(1)若 经过平移后得到△ ,已知点 的坐标为 ,写出顶点 , 的坐标;
(2)若 和△ 关于原点 成中心对称图形,写出△ 的各顶点的坐标;
(3)将 绕着点 按顺时针方向旋转 得到△ ,写出△ 的各顶点的坐标.
如图,二次函数 的图象经过点 , , ,直线 与 轴交于点 , 为二次函数图象上任一点.
(1)求这个二次函数的解析式;
(2)若点 在直线 的上方,过 分别作 和 轴的垂线,交直线 于不同的两点 , 在 的左侧),求 周长的最大值;
(3)是否存在点 ,使得 是以 为直角边的直角三角形?如果存在,求点 的坐标;如果不存在,请说明理由.
为迎接“国家卫生城市”复检,某市环卫局准备购买 、 两种型号的垃圾箱,通过市场调研得知:购买3个 型垃圾箱和2个 型垃圾箱共需540元;购买2个 型垃圾箱比购买3个 型垃圾箱少用160元.
(1)每个 型垃圾箱和 型垃圾箱各多少元?
(2)现需要购买 , 两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责 型垃圾箱的安装,每天可以安装15个,乙负责 型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买 型垃圾箱不少于150个时,该型号的产品可以打九折;若购买 型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买 型和 型垃圾箱各多少个?最低费用是多少元?
某体育场看台的坡面 与地面的夹角是 ,看台最高点 到地面的垂直距离 为3.6米,看台正前方有一垂直于地面的旗杆 ,在 点用测角仪测得旗杆的最高点 的仰角为 ,已知测角仪 的高度为1.6米,看台最低点 与旗杆底端 之间的距离为16米( , , 在同一条直线上).
(1)求看台最低点 到最高点 的坡面距离;
(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩 、 之间的距离为1.2米,下端挂钩 与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数) , , , , ,
企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:
(1)宣传小组抽取的捐款人数为 人,请补全条形统计图;
(2)统计的捐款金额的中位数是 元;
(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;
(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?
如图,二次函数 的图象经过点 , , ,直线 与 轴交于点 , 为二次函数图象上任一点.
(1)求这个二次函数的解析式;
(2)若点 在直线 的上方,过 分别作 和 轴的垂线,交直线 于不同的两点 , 在 的左侧),求 周长的最大值;
(3)是否存在点 ,使得 是以 为直角边的直角三角形?如果存在,求点 的坐标;如果不存在,请说明理由.
为迎接“国家卫生城市”复检,某市环卫局准备购买 、 两种型号的垃圾箱,通过市场调研得知:购买3个 型垃圾箱和2个 型垃圾箱共需540元;购买2个 型垃圾箱比购买3个 型垃圾箱少用160元.
(1)每个 型垃圾箱和 型垃圾箱各多少元?
(2)现需要购买 , 两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责 型垃圾箱的安装,每天可以安装15个,乙负责 型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买 型垃圾箱不少于150个时,该型号的产品可以打九折;若购买 型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买 型和 型垃圾箱各多少个?最低费用是多少元?
某体育场看台的坡面 与地面的夹角是 ,看台最高点 到地面的垂直距离 为3.6米,看台正前方有一垂直于地面的旗杆 ,在 点用测角仪测得旗杆的最高点 的仰角为 ,已知测角仪 的高度为1.6米,看台最低点 与旗杆底端 之间的距离为16米( , , 在同一条直线上).
(1)求看台最低点 到最高点 的坡面距离;
(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩 、 之间的距离为1.2米,下端挂钩 与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数) , , , , ,
试题篮
()