已知二次函数 的图象与 轴的交于 、 两点,与 轴交于点 ,
(1)求二次函数的表达式及 点坐标;
(2) 是二次函数图象上位于第三象限内的点,求点 到直线 的距离取得最大值时点 的坐标;
(3) 是二次函数图象对称轴上的点,在二次函数图象上是否存在点 ,使以 、 、 、 为顶点的四边形是平行四边形?若有,请写出点 的坐标(不写求解过程).
在平面直角坐标系中,我们定义直线 为抛物线 、 、 为常数, 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 轴上的三角形为其“梦想三角形”.
已知抛物线 与其“梦想直线”交于 、 两点(点 在点 的左侧),与 轴负半轴交于点 .
(1)填空:该抛物线的“梦想直线”的解析式为 ,点 的坐标为 ,点 的坐标为 ;
(2)如图,点 为线段 上一动点,将 以 所在直线为对称轴翻折,点 的对称点为 ,若 为该抛物线的“梦想三角形”,求点 的坐标;
(3)当点 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 ,使得以点 、 、 、 为顶点的四边形为平行四边形?若存在,请直接写出点 、 的坐标;若不存在,请说明理由.
如图,抛物线 的图象经过 , , 三点.
(1)求抛物线的解析式.
(2)抛物线的顶点 与对称轴 上的点 关于 轴对称,直线 交抛物线于点 ,直线 交 于点 ,若直线 将 的面积分为 两部分,求点 的坐标.
(3) 为抛物线上的一动点, 为对称轴上动点,抛物线上是否存在一点 ,使 、 、 、 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,抛物线 经过 、 、 三点,点 为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当 的面积为3时,求点 的坐标;
(3)过点 作 ,垂足为点 ,是否存在点 ,使得 中的某个角等于 的2倍?若存在,求点 的横坐标;若不存在,请说明理由.
出关于 的一元二次方程,解之取其非零值可得出点 的横坐标.依此即可得解.
如图,直线 与函数 的图象相交于 、 两点,与 轴相交于 点,过 、 两点作 轴的垂线,垂足分别为 、 ,过 、 两点作 轴的垂线,垂足分别为 、 ;直线 与 相交于点 ,连接 .设 、 两点的坐标分别为 、 ,其中 .
(1)如图①,求证: ;
(2)如图②,若 、 、 、 四点在同一圆周上,求 的值;
(3)如图③,已知 ,且点 在直线 上,试问:在线段 上是否存在点 ,使得 ?如存在,请求出点 的坐标;若不存在,请说明理由.
如图,在矩形 中,对角线相交于点 , 为 的内切圆,切点分别为 , , , , .
(1)求 , ;
(2)点 从点 出发,沿线段 向点 以每秒3个单位长度的速度运动,当点 运动到点 时停止,过点 作 交 于点 ,设运动时间为 秒.
①将 沿 翻折得△ ,是否存在时刻 ,使点 恰好落在边 上?若存在,求 的值;若不存在,请说明理由;
②若点 为线段 上的动点,当 为正三角形时,求 的值.
已知,抛物线 与 轴交于 、 两点,与 轴交于点 ,抛物线的对称轴是直线 , 为抛物线的顶点,点 在 轴 点的上方,且 .
(1)求抛物线的解析式及顶点 的坐标;
(2)求证:直线 是 外接圆的切线;
(3)在直线 上方的抛物线上找一点 ,使 ,求点 的坐标;
(4)在坐标轴上找一点 ,使以点 、 、 为顶点的三角形与 相似,直接写出点 的坐标.
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 ,已知点 坐标为 ,点 坐标为 .
(1)求抛物线的表达式;
(2)点 为直线 上方抛物线上的一个动点,当 的面积最大时,求点 的坐标;
(3)如图2,点 为该抛物线的顶点,直线 轴于点 ,在直线 上是否存在点 ,使点 到直线 的距离等于点 到点 的距离?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 经过 , , 三点.
(1)求该抛物线的解析式;
(2)经过点 的直线交 轴于点 ,交线段 于点 ,若 .
①求直线 的解析式;
②已知点 在该抛物线的对称轴 上,且纵坐标为1,点 是该抛物线上位于第一象限的动点,且在 右侧,点 是直线 上的动点,若 是以点 为直角顶点的等腰直角三角形,求点 的坐标.
如图,二次函数 的图象过 、 、 , 三点.
(1)求二次函数的解析式;
(2)若线段 的垂直平分线与 轴交于点 ,与二次函数的图象在 轴上方的部分相交于点 ,求直线 的解析式;
(3)在直线 下方的二次函数的图象上有一动点 ,过点 作 轴,交直线 于 ,当线段 的长最大时,求点 的坐标.
如图,已知等边 的边长为8,点 是 边上的一个动点(与点 、 不重合).直线 是经过点 的一条直线,把 沿直线 折叠,点 的对应点是点 .
(1)如图1,当 时,若点 恰好在 边上,则 的长度为 ;
(2)如图2,当 时,若直线 ,则 的长度为 ;
(3)如图3,点 在 边上运动过程中,若直线 始终垂直于 , 的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当 时,在直线 变化过程中,求 面积的最大值.
已知抛物线 与 轴交于 , 两点, 为抛物线的顶点,抛物线的对称轴交 轴于点 ,连结 ,且 ,如图所示.
(1)求抛物线的解析式;
(2)设 是抛物线的对称轴上的一个动点.
①过点 作 轴的平行线交线段 于点 ,过点 作 交抛物线于点 ,连结 、 ,求 的面积的最大值;
②连结 ,求 的最小值.
如图,在平面直角坐标系 中,直线 分别交 轴、 轴于 , 两点,经过 , 两点的抛物线 与 轴的正半轴相交于点 .
(1)求抛物线的解析式;
(2)若 为线段 上一点, ,求 的长;
(3)在(2)的条件下,设 是 轴上一点,试问:抛物线上是否存在点 ,使得以 , , , 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
已知平面图形 ,点 、 是 上任意两点,我们把线段 的长度的最大值称为平面图形 的“宽距”.例如,正方形的宽距等于它的对角线的长度.
(1)写出下列图形的宽距:
①半径为1的圆: ;
②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;
(2)如图2,在平面直角坐标系中,已知点 、 , 是坐标平面内的点,连接 、 、 所形成的图形为 ,记 的宽距为 .
①若 ,用直尺和圆规画出点 所在的区域并求它的面积(所在区域用阴影表示);
②若点 在 上运动, 的半径为1,圆心 在过点 且与 轴垂直的直线上.对于 上任意点 ,都有 ,直接写出圆心 的横坐标 的取值范围.
试题篮
()