阅读理解:对于任意正实数a、b,∵(
-
)2≥0,∴a-2
+b≥0,∴a+b≥2
,只有当a=b时,等号成立.
结论:在a+b≥2
(a、b均为正实数)中,若ab为定值p,则a+b≥2
,只有当a=b时,a+b有最小值2
.根据上述内容,回答下列问题:
(1)若m>0,只有当m=时,m+
有最小值;
若m>0,只有当m=时,2m+
有最小值.
(2)如图,已知直线L1:y=
x+1与x轴交于点A,过点A的另一直线L2与双曲线y=
(x>0)相交于点B(2,m),求直线L2的解析式.
(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试
求当线段CD最短时,点A、B、C、D围成的四边形面积.
等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
⑴ 当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
⑵ 若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
⑶ 在⑵的条件下,是否存在某一时刻,△ABC各边刚好与⊙O都相切?若存在,求出刚好符合条件时两个图形移动了多少时间?若不存在,能否改变AB、BC沿BA、BC方向的速度,使△ABC各边刚好与⊙O都相切.
如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为
轴、
轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在
轴上),抛物线
经过A、C两点,与
轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=
,△ACQ的面积 S△ACQ=
,直接写出
与
之间的函数关系式.
![]() |
如图,抛物线y=
+bx+c的顶点为C(0,-
),与x轴交于点A、B,连接AC、BC,得等边△ABC. T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C出发,以每秒
个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A点时,点S停止运动. 设运动时间为t秒.
(1)求二次函数的解析式;
(2)设△TSC的面积为S,求S关于t的函数解析式;
(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.
如图,在直角梯形OABC中,已知B、C两点的坐标分别为B(8,6)、C(10,0),动点M由原点O出发沿OB方向匀速运动,速度为1单位/秒;同时,线段DE由BC出发沿BA方向匀速运动,速度为1单位/秒,交OB于点N,连接DM,设运动时间为t秒(0<t<8). 
(1) 当
为何值时,DM∥OA?
(2)连接ME,在点M、N重合之前的运动过程中,五边形DMECB的面积是否发生变化?若不变,请求出它的值;若发生变化,请说明理由.
(3)当t为何值时,△DMB为等腰三角形.
已知双曲线
与直线
相交于A、B两点.第一象限上的点M(
)在双曲线
上(在A点左侧).过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及
的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求此时M点的坐标;
(3)在(2)的条件下,设直线AM分别与x轴、y轴相交于点P、Q两点,求MA:PQ的值.
如图,在菱形ABCD中,∠C=60°,AB=4,过点B作BE⊥CD,垂足为E,连结AE.F为AE上一点,且∠BFE=60°. 
(1)求证:△ABF∽△EAD;
(2)求BF的长.
如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
-1,直线l y=-X-
与坐标轴分别交于A,C两点,点B的坐标为(4,1) ,⊙B与X轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2) ⊙B以每秒1个单位长度的速度沿X轴负方向平移,同时,直线l绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线l也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度?
(3)如图2.过A,O,C三点作⊙O1 ,点E是劣弧
上一点,连接EC,EA.EO,当点E在劣弧
上运动时(不与A,O两点重合),
的值是否发生变化?如果不变,求其值,如果变化,说明理由.
. 
在锐角△ABC中,AB=AC,∠A使关于x的方程
-sinA x+
sinA-
=0有两个相等的实数根.判断△ABC的形状;
设D为BC上的一点,且DE⊥AB于E,DF⊥AC于F,若DE=m,DF=n,且3m=4n和m2+n2=25,求AB的长.
如图所示,某地区对某种药品的需求量
(万件),供应量
(万件)与价格x(元/件)分别近似满足下列函数关系式:
,
,需求量为0时,即停止供应;当
时,该药品的价格称为稳定价格,需求量称为稳定需求量.求该药品的稳定价格与稳定需求量.
价格在什么范围内,该药品的需求量低于供应量?
由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.

在平面直角坐标系xOy中,已知抛物线
的对称轴是
,并且经过点(-2,-5).
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.
已知如图,二次函数
图象的顶点为
,与
轴交于
、
两点(
在
点右侧),点
、
关于直线
:
对称.
(1)求
、
两点坐标,并证明点
在直线
上;
(2)求二次函数解析式;
(3)过点
作直线
∥
交直线
于
点,
、
分别为直线
和直线
上的两个动点,连接
、
、
,求
和的最小值.
如图,直线y=-2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.
(1)填空:点C的坐标是( ,),点D的坐标是( ,);
(2)设直线CD与AB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.
如图,已知
中,
,
,
,
是
边上的中点,
是
边上的点(不与端点重合),
是
边上的点,且
∥
,延长
与直线
相交于点
,
点是
延长线上的点,且
,联结
,设
,
.
(1)求
关于
的函数关系式及其定义域;
(2)联结
,当以
为半径的
和以
为半径的
外切时,求
的正切值;
(3)当
与
相似时,求
的长.
知识背景:杭州留下有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)
(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板
的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板
做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:城西一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.
试题篮
()