优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

如图,在平面直角坐标系中,O为坐标原点,已知A(2,),C(4,0),E点从O出发,以每秒1个单位的速度,沿边OC向C点运动,P点从O点出发,以每秒2个单位的速度,沿边OA与边AC向C运动,E、P两点同时出发,设运动时间为t秒。

(1)求∠AOC的度数,
(2)过 E作EH⊥AC于H,当t为何值时,△EPH是等边三角形。
(3)设四边形OEHP的面积S,求S关于t的函数表达式,并求出其最大值。
(4)当△OPE与以E、H、P为顶点的三角形相似,求P点坐标。

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,AC=4㎝,BC=5㎝,D是BC边上一点,CD=3㎝,点P为边AC上一动点(点P与A、C不重合),过点P作PE// BC,交AD于点E.点P以1㎝/s的速度从A到C匀速运动。
设点P的运动时间为t(s),DE的长为y(cm),求y关于t的函数关系式,并写出的取值范围;
当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时∠DPE的正切值;
将△ABD沿直线AD翻折,得到△AB’D,连接B’ C.如果∠ACE=∠BCB’,求t的值.

  • 题型:未知
  • 难度:未知

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组的同学发现,在如图1-1的矩形ABCD中,ACBD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程
(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BABC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,判断以ADAFAH为三边能否构成三角形?若能构成,请判断这个三角形的形状,若不能构成,请说明理由.

(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'的大小关系.

来源:2012届江苏省无锡市新区九年级二模数学卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xoy中,抛物线yx2x-10与x轴的交点为A,与y轴的交点为点B,过点Bx轴的平行线BC,交抛物线于点C,连结AC.现有两动点PQ分别从OC两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OCPQ相交于点D,过点DDEOA,交CA于点E,射线QEx轴于点F.设动点PQ移动的时间为t(单位:秒)

(1)求A,C两点的坐标和抛物线的顶点M坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<4.5时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

来源:2012届江苏省无锡市新区九年级二模数学卷
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,连接AP.设点E运动时间为ts.

在点E运动过程中,AP的长度是如何变化的?( )

A.一直变短 B.一直变长 C.先变长后变短 D.先变短后变长

在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,点P的位置应该在
以P为圆心作⊙P,当⊙P与矩形ABCD三边所在直线都相切时,求出此时t的值,并指出此时⊙P的半径长.

来源:2012年江苏省南京市溧水县中考一模数学试卷
  • 题型:未知
  • 难度:未知

一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.
请你解答下列问题:
将m看作已知量,分别写出当0<x<m和x>m时,之间的函数关系式;
按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.

月份
用水量(吨)
水费(元)
四月
35
59.5
五月
80
151

来源:2012年江苏省南京市溧水县中考一模数学试卷
  • 题型:未知
  • 难度:未知

七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.



图2



图1

我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点,就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
如图3,正方形ABCD的边长为2,E为BC的中点, P是BD上一动点.连结EP,CP,则EP+CP的最小值是________

运用:
如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是
操作:
如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹)


来源:2012年江苏省南京市溧水县中考一模数学试卷
  • 题型:未知
  • 难度:未知

如图,在△ABD中,∠A=∠B=30°,以AB边上一点O为圆心,过A,D两点作⊙O交AB于C.

判断直线BD与⊙O的位置关系,并说明理由;
连接CD,若CD=5,求AB的长.

来源:2012年江苏省南京市溧水县中考一模数学试卷
  • 题型:未知
  • 难度:未知

如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长.(参考数据:=1.73)

来源:2012年江苏省南京市溧水县中考一模数学试卷
  • 题型:未知
  • 难度:未知

图①表示的是某综合商场今年1—5月的商品各月销售总额的情况,图②表示商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:

来自商场财务部的数据报告表明,商场1—5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;
商场服装部5月份的销售额是多少万元?
小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.

来源:2012年江苏省南京市溧水县中考一模数学试卷
  • 题型:未知
  • 难度:未知

在四边形中,对角线AC与BD交于点O,△ABO≌△CDO.
求证:四边形为平行四边形;
若∠ABO=∠DCO,求证:四边形为矩形.

来源:2012年江苏省南京市溧水县中考一模数学试卷
  • 题型:未知
  • 难度:未知

问题背景:
如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);

探究发现:
如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是 _______,给出证明,并通过计算说明此时铁片都能穿过圆孔;

拓展迁移:
如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;

①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围 .

  • 题型:未知
  • 难度:未知

某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:

项目
第一年的工资(万元)
一年后的计算方法
基础工资
1
每年的增长率相同
住房补贴
0.04
每年增加0.04
医疗费
0.1384
固定不变


设基础工资每年的增长率为,用含的代数式表示第三年的基础工资为万元.
某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18%,问基础工资每年的增长率是多少?

  • 题型:未知
  • 难度:未知

某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离AB是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离CD是1.5m,看旗杆顶部M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).
请求出旗杆MN的高度.(参考数据:≈1.4,≈1.7,结果保留整数。)

  • 题型:未知
  • 难度:未知

点D是⊙O的直径CA延长线上一点,点B在⊙O上,∠DBA=∠C.
请判断BD所在的直线与⊙O的位置关系,并说明理由;
若AD=AO=1,求图中阴影部分的面积(结果保留根号).

来源:2012年江苏省南京市六合区中考一模数学试卷
  • 题型:未知
  • 难度:未知

初中数学解答题