某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
日 |
增减 |
-5 |
+7 |
-3 |
+4 |
+10 |
-9 |
-25 |
(1)本周三生产了多少辆摩托车?
(2)本周总生产量与计划生产量相比,是增加还是减少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
(本小题满分12分)如图, 内接于,的平分线与交于点,与交于点,延长,与的延长线交于点,连接是的中点,连结.
(1)判断与的位置关系,写出你的结论并证明;
(2)求证:;
(3)若,求的面积.
(本小题满分8分)如图,一次函数的图象与反比例函数的图象交于两点,与轴交于点,与轴交于点,已知,,点的坐标为.
(1)求反比例函数的解析式.
(2)求一次函数的解析式.
(3)在轴上存在一点,使得与相似,请你求出点的坐标.
(本小题满分8分)
如图,从热气球上测得两建筑物、底部的俯角分别为30°和.如果这时气球的高度为90米.且点、、在同一直线上,求建筑物、间的距离.
(10分)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出与之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
(本小题满分9分)
已知关于的方程有两个不相等的实数根、,问是否存在实数,使方程的两实数根互为相反数?如果存在,求出的值;如果不存在,请说明理由。
(本小题满分7分)
如图,不透明圆锥体DEC放在水平面上,在A处灯光照射下形成影子。设BP过底面的圆心O,已知圆锥的高为m,底面半径为2m,BE=4m。求:
(1) 求∠B的度数.
(2)若∠ACP=2∠B,求光源A距水平面的高度。(结果保留根号)
(本题9分)
已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5,试问:k取何值时,△ABC是以BC为斜边的直角三角形?
(本题满分8分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sad A,这时sad A.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad 60°= .
(2)对于0°<A<180°,∠A的正对值sad A的取值范围是
(3)如图②,在Rt△ABC中,∠C=90°,sin A,试求sad A的值
|
A
如图10,为了测量一棵树AB的高度,测量者在D点立一高CD等于2m的标杆,现测量者从E处可以看到标杆顶点C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,求树高。
如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴子点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3。
(1)设点P的纵坐标为p,写出p随k变化的函数关系式。
(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP。请你对于点P处于图中位置时的两三角形相似给予证明;
(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由。
如图,在直角坐标系xOy中,点A在x轴的正半轴上,点B在y轴的正半轴上, 以OB为直径的⊙C与AB交于点D, DE与⊙C相切交x轴于点E, 且OA=cm,∠OAB="30°."
(1)求点B的坐标及直线AB的解析式;
(2)过点B作BG^EC于 F, 交x轴于点G, 求BD的长及点F的坐标;
(3)设点P从点A开始沿ABG的方向以4cm/s的速度匀速向点G移动,点Q同时
从点A开始沿AG匀速向点G移动, 当四边形CBPQ为平行四边形时, 求点Q的移动
速度.
已知:如图①,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,连接、、。
(I)求证:
(II)①当点在何处时,的值最小;
②当点在何处时,的值最小,并说明理由;
(III)当的最小值为时,求正方形的边长。
试题篮
()