在平面直角坐标系中, 为坐标原点,直线 交二次函数 的图象于点 , ,点 在该二次函数的图象上,设过点 (其中 且平行于 轴的直线交直线 于点 ,交直线 于点 ,以线段 、 为邻边作矩形 .
(1)若点 的横坐标为8.
①用含 的代数式表示 的坐标;
②点 能否落在该二次函数的图象上?若能,求出 的值;若不能,请说明理由.
(2)当 时,若点 恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线 的函数表达式.

如图,二次函数 , , , 的图象分别为 、 , 交 轴于点 ,点 在 上,且位于 轴右侧,直线 与 在 轴左侧的交点为 .

(1)若 点的坐标为 , 的顶点坐标为 ,求 的值;
(2)设直线 与 轴所夹的角为 .
①当 ,且 为 的顶点时,求 的值;
②若 ,试说明:当 、 、 各自取不同的值时, 的值不变;
(3)若 ,试判断点 是否为 的顶点?请说明理由.
如图,已知 , 是 的平分线, 是射线 上一点, .动点 从点 出发,以 的速度沿 水平向左作匀速运动,与此同时,动点 从点 出发,也以 的速度沿 竖直向上作匀速运动.连接 ,交 于点 .经过 、 、 三点作圆,交 于点 ,连接 、 .设运动时间为 ,其中 .
(1)求 的值;
(2)是否存在实数 ,使得线段 的长度最大?若存在,求出 的值;若不存在,说明理由.
(3)求四边形 的面积.

【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.

【理解运用】
(1)如图①,对余四边形 中, , , ,连接 .若 ,求 的值;
(2)如图②,凸四边形 中, , ,当 时,判断四边形 是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点 , , ,四边形 是对余四边形,点 在对余线 上,且位于 内部, .设 ,点 的纵坐标为 ,请直接写出 关于 的函数解析式.
如图①,要在一条笔直的路边 上建一个燃气站,向 同侧的 、 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点 关于 的对称点 ,线段 与直线 的交点 的位置即为所求,即在点 处建燃气站,所得路线 是最短的.
为了证明点 的位置即为所求,不妨在直线1上另外任取一点 ,连接 、 ,证明 .请完成这个证明.
(2)如果在 、 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.

(1)如图1,点 为矩形 对角线 上一点,过点 作 ,分别交 、 于点 、 .若 , , 的面积为 , 的面积为 ,则 ;
(2)如图2,点 为 内一点(点 不在 上),点 、 、 、 分别为各边的中点.设四边形 的面积为 ,四边形 的面积为 (其中 ,求 的面积(用含 、 的代数式表示);
(3)如图3,点 为 内一点(点 不在 上),过点 作 , ,与各边分别相交于点 、 、 、 .设四边形 的面积为 ,四边形 的面积为 (其中 ,求 的面积(用含 、 的代数式表示);
(4)如图4,点 、 、 、 把 四等分.请你在圆内选一点 (点 不在 、 上),设 、 、 围成的封闭图形的面积为 , 、 、 围成的封闭图形的面积为 , 的面积为 , 的面积为 ,根据你选的点 的位置,直接写出一个含有 、 、 、 的等式(写出一种情况即可).

如图①,二次函数 的图象与直线 交于 、 两点.点 是 轴上的一个动点,过点 作 轴的垂线交直线1于点 ,交该二次函数的图象于点 ,设点 的横坐标为 .
(1) , ;
(2)若点 在点 的上方,且 ,求 的值;
(3)将直线 向上平移4个单位长度,分别与 轴、 轴交于点 、 (如图② .
①记 的面积为 , 的面积为 ,是否存在 ,使得点 在直线 的上方,且满足 ?若存在,求出 及相应的 , 的值;若不存在,请说明理由.
②当 时,将线段 绕点 顺时针旋转 得到线段 ,连接 、 、 .若 ,直接写出直线 与该二次函数图象交点的横坐标.

如图,二次函数 的图象与 轴交于点 ,过点 作 轴的平行线交抛物线于另一点 ,抛物线过点 ,且顶点为 ,连接 、 、 、 .
(1)填空: ;
(2)点 是抛物线上一点,点 的横坐标大于1,直线 交直线 于点 .若 ,求点 的坐标;
(3)点 在直线 上,点 关于直线 对称的点为 ,点 关于直线 对称的点为 ,连接 .当点 在 轴上时,直接写出 的长.

如图所示,二次函数 的图象(记为抛物线 与 轴交于点 ,与 轴分别交于点 、 ,点 、 的横坐标分别记为 , ,且 .
(1)若 , ,且过点 ,求该二次函数的表达式;
(2)若关于 的一元二次方程 的判别式△ .求证:当 时,二次函数 的图象与 轴没有交点.
(3)若 ,点 的坐标为 , ,过点 作直线 垂直于 轴,且抛物线的 的顶点在直线 上,连接 、 、 , 的延长线与抛物线 交于点 ,若 ,求 的最小值.

如图,半径为4的 中,弦 的长度为 ,点 是劣弧 上的一个动点,点 是弦 的中点,点 是弦 的中点,连接 、 、 .
(1)求 的度数;
(2)当点 沿着劣弧 从点 开始,逆时针运动到点 时,求 的外心 所经过的路径的长度;
(3)分别记 , 的面积为 , ,当 时,求弦 的长度.

如图1所示,在平面直角坐标系中,抛物线 与 轴交于点 , 和点 ,与 轴交于点 .
(1)求抛物线 的表达式;
(2)如图2,将抛物线 先向左平移1个单位,再向下平移3个单位,得到抛物线 ,若抛物线 与抛物线 相交于点 ,连接 , , .
①求点 的坐标;
②判断 的形状,并说明理由;
(3)在(2)的条件下,抛物线 上是否存在点 ,使得 为等腰直角三角形,若存在,求出点 的坐标;若不存在,请说明理由.

某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为 ,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.
如图1所示,一张纸条水平放置不动,另一张纸条与它成 的角,将该纸条从右往左平移.
(1)写出在平移过程中,重叠部分可能出现的形状.
(2)当重叠部分的形状为如图2所示的四边形 时,求证:四边形 是菱形.
(3)设平移的距离为 ,两张纸条重叠部分的面积为 .求 与 的函数关系式,并求 的最大值.

定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为"直角等邻对补"四边形,简称"直等补"四边形.
根据以上定义,解决下列问题:
(1)如图1,正方形 中, 是 上的点,将 绕 点旋转,使 与 重合,此时点 的对应点 在 的延长线上,则四边形 为"直等补"四边形,为什么?
(2)如图2,已知四边形 是"直等补"四边形, , , ,点 到直线 的距离为 .
①求 的长;
②若 、 分别是 、 边上的动点,求 周长的最小值.

已知直线 与抛物线 , 为常数, 的一个交点为 ,点 是 轴正半轴上的动点.
(1)当直线 与抛物线 , 为常数, 的另一个交点为该抛物线的顶点 时,求 , , 的值及抛物线顶点 的坐标;
(2)在(1)的条件下,设该抛物线与 轴的交点为 ,若点 在抛物线上,且点 的横坐标为 ,当 时,求 的值;
(3)点 在抛物线上,且点 的横坐标为 ,当 的最小值为 时,求 的值.
试题篮
()