优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

如图,矩形 ABCD 中,点 P 为对角线 AC 所在直线上的一个动点,连接 PD ,过点 P PE PD ,交直线 AB 于点 E ,过点 P MN AB ,交直线 CD 于点 M ,交直线 AB 于点 N AB = 4 3 AD = 4

(1)如图1,①当点 P 在线段 AC 上时, PDM EPN 的数量关系为: PDM EPN

DP PE 的值是   

(2)如图2,当点 P CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;

(3)如图3,以线段 PD PE 为邻边作矩形 PEFD .设 PM 的长为 x ,矩形 PEFD 的面积为 y .请直接写出 y x 之间的函数关系式及 y 的最小值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + 9 4 x + c ( a 0 ) x 轴相交于点 A ( - 1 , 0 ) 和点 B ,与 y 轴相交于点 C ( 0 , 3 ) ,作直线 BC

(1)求抛物线的解析式;

(2)在直线 BC 上方的抛物线上存在点 D ,使 DCB = 2 ABC ,求点 D 的坐标;

(3)在(2)的条件下,点 F 的坐标为 ( 0 , 7 2 ) ,点 M 在抛物线上,点 N 在直线 BC 上.当以 D F M N 为顶点的四边形是平行四边形时,请直接写出点 N 的坐标.

来源:2020年辽宁省铁岭市、葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx - 3 过点 A ( - 3 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为点 D

(1)求抛物线的解析式;

(2)点 P 为直线 CD 上的一个动点,连接 BC

①如图1,是否存在点 P ,使 PBC = BCO ?若存在,求出所有满足条件的点 P 的坐标;若不存在,请说明理由;

②如图2,点 P x 轴上方,连接 PA 交抛物线于点 N PAB = BCO ,点 M 在第三象限抛物线上,连接 MN ,当 ANM = 45 ° 时,请直接写出点 M 的坐标.

来源:2020年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, O 是坐标原点,抛物线 y = 1 2 x 2 + bx + c 经过点 B ( 6 , 0 ) 和点 C ( 0 , - 3 )

(1)求抛物线的表达式;

(2)如图2,线段 OC 绕原点 O 逆时针旋转 30 ° 得到线段 OD .过点 B 作射线 BD ,点 M 是射线 BD 上一点(不与点 B 重合),点 M 关于 x 轴的对称点为点 N ,连接 NM NB

①直接写出 ΔMBN 的形状为    

②设 ΔMBN 的面积为 S 1 ΔODB 的面积为是 S 2 .当 S 1 = 2 3 S 2 时,求点 M 的坐标;

(3)如图3,在(2)的结论下,过点 B BE BN ,交 NM 的延长线于点 E ,线段 BE 绕点 B 逆时针旋转,旋转角为 α ( 0 ° < α < 120 ° ) 得到线段 BF ,过点 F FK / / x 轴,交射线 BE 于点 K KBF 的角平分线和 KFB 的角平分线相交于点 G ,当 BG = 2 3 时,请直接写出点 G 的坐标为   

来源:2020年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,直线 y = x - 4 x 轴交于点 B ,与 y 轴交于点 A ,抛物线 y = - 1 2 x 2 + bx + c 经过点 B 和点 C ( 0 , 4 ) ΔABO 沿射线 AB 方向以每秒 2 个单位长度的速度平移,平移后的三角形记为 ΔDEF (点 A B O 的对应点分别为点 D E F ) ,平移时间为 t ( 0 < t < 4 ) 秒,射线 DF x 轴于点 G ,交抛物线于点 M ,连接 ME

(1)求抛物线的解析式;

(2)当 tan EMF = 4 3 时,请直接写出 t 的值;

(3)如图2,点 N 在抛物线上,点 N 的横坐标是点 M 的横坐标的 1 2 ,连接 OM NF OM NF 相交于点 P ,当 NP = FP 时,求 t 的值.

来源:2020年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = - 1 3 x 2 + bx + c x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C

(1)求抛物线的表达式;

(2)如图,直线 y = 3 4 x + 9 4 与抛物线交于 A D 两点,与直线 BC 交于点 E .若 M ( m , 0 ) 是线段 AB 上的动点,过点 M x 轴的垂线,交抛物线于点 F ,交直线 AD 于点 G ,交直线 BC 于点 H

①当点 F 在直线 AD 上方的抛物线上,且 S ΔEFG = 5 9 S ΔOEG 时,求 m 的值;

②在平面内是否在点 P ,使四边形 EFHP 为正方形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2020年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 + bx + c 的图象交 x 轴于点 A ( - 3 , 0 ) B ( 1 , 0 ) ,交 y 轴于点 C .点 P ( m , 0 ) x 轴上的一动点, PM x 轴,交直线 AC 于点 M ,交抛物线于点 N

(1)求这个二次函数的表达式;

(2)①若点 P 仅在线段 AO 上运动,如图,求线段 MN 的最大值;

②若点 P x 轴上运动,则在 y 轴上是否存在点 Q ,使以 M N C Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点 Q 的坐标;若不存在,请说明理由.

来源:2020年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 - 2 3 x + c ( a 0 ) 过点 O ( 0 , 0 ) A ( 6 , 0 ) .点 B 是抛物线的顶点,点 D x 轴下方抛物线上的一点,连接 OB OD

(1)求抛物线的解析式;

(2)如图①,当 BOD = 30 ° 时,求点 D 的坐标;

(3)如图②,在(2)的条件下,抛物线的对称轴交 x 轴于点 C ,交线段 OD 于点 E ,点 F 是线段 OB 上的动点(点 F 不与点 O 和点 B 重合),连接 EF ,将 ΔBEF 沿 EF 折叠,点 B 的对应点为点 B ' ΔEF B ' ΔOBE 的重叠部分为 ΔEFG ,在坐标平面内是否存在一点 H ,使以点 E F G H 为顶点的四边形是矩形?若存在,请直接写出点 H 的坐标,若不存在,请说明理由.

来源:2020年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,函数 F 1 F 2 的图象关于 y 轴对称,它们与直线 x = t ( t > 0 ) 分别相交于点 P Q

(1)如图,函数 F 1 y = x + 1 ,当 t = 2 时, PQ 的长为    

(2)函数 F 1 y = 3 x ,当 PQ = 6 时, t 的值为   

(3)函数 F 1 y = a x 2 + bx + c ( a 0 )

①当 t = b b 时,求 ΔOPQ 的面积;

②若 c > 0 ,函数 F 1 F 2 的图象与 x 轴正半轴分别交于点 A ( 5 , 0 ) B ( 1 , 0 ) ,当 c x c + 1 时,设函数 F 1 的最大值和函数 F 2 的最小值的差为 h ,求 h 关于 c 的函数解析式,并直接写出自变量 c 的取值范围.

来源:2020年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于点 A ,点 B ,与 y 轴交于点 C ,抛物线的对称轴为直线 x = - 1 ,点 C 坐标为 ( 0 , 4 )

(1)求抛物线表达式;

(2)在抛物线上是否存在点 P ,使 ABP = BCO ,如果存在,求出点 P 坐标;如果不存在,请说明理由;

(3)在(2)的条件下,若点 P x 轴上方,点 M 是直线 BP 上方抛物线上的一个动点,求点 M 到直线 BP 的最大距离;

(4)点 G 是线段 AC 上的动点,点 H 是线段 BC 上的动点,点 Q 是线段 AB 上的动点,三个动点都不与点 A B C 重合,连接 GH GQ HQ ,得到 ΔGHQ ,直接写出 ΔGHQ 周长的最小值.

来源:2020年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + 2 ( a 0 ) 经过点 A ( - 2 , - 4 ) 和点 C ( 2 , 0 ) ,与 y 轴交于点 D ,与 x 轴的另一交点为点 B

(1)求抛物线的解析式;

(2)如图1,连接 BD ,在抛物线上是否存在点 P ,使得 PBC = 2 BDO ?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3)如图2,连接 AC ,交 y 轴于点 E ,点 M 是线段 AD 上的动点(不与点 A ,点 D 重合),将 ΔCME 沿 ME 所在直线翻折,得到 ΔFME ,当 ΔFME ΔAME 重叠部分的面积是 ΔAMC 面积的 1 4 时,请直接写出线段 AM 的长.

来源:2020年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = - 1 2 x 2 + bx + 3 2 x 轴正半轴交于点 A ,且点 A 的坐标为 ( 3 , 0 ) ,过点 A 作垂直于 x 轴的直线 l P 是该抛物线上的任意一点,其横坐标为 m ,过点 P PQ l 于点 Q M 是直线 l 上的一点,其纵坐标为 - m + 3 2 .以 PQ QM 为边作矩形 PQMN

(1)求 b 的值.

(2)当点 Q 与点 M 重合时,求 m 的值.

(3)当矩形 PQMN 是正方形,且抛物线的顶点在该正方形内部时,求 m 的值.

(4)当抛物线在矩形 PQMN 内的部分所对应的函数值 y x 的增大而减小时,直接写出 m 的取值范围.

来源:2020年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,函数 y = x 2 - 2 ax - 1 ( a 为常数)的图象与 y 轴交于点 A

(1)求点 A 的坐标.

(2)当此函数图象经过点 ( 1 , 2 ) 时,求此函数的表达式,并写出函数值 y x 的增大而增大时 x 的取值范围.

(3)当 x 0 时,若函数 y = x 2 - 2 ax - 1 ( a 为常数)的图象的最低点到直线 y = 2 a 的距离为2,求 a 的值.

(4)设 a < 0 Rt Δ EFG 三个顶点的坐标分别为 E ( - 1 , - 1 ) F ( - 1 , a - 1 ) G ( 0 , a - 1 ) .当函数 y = x 2 - 2 ax - 1 ( a 为常数)的图象与 ΔEFG 的直角边有交点时,交点记为点 P .过点 P y 轴的垂线,与此函数图象的另一个交点为 P ' ( P ' P 不重合),过点 A y 轴的垂线,与此函数图象的另一个交点为 A ' .若 AA ' = 2 PP ' ,直接写出 a 的值.

来源:2020年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知点 A ( 1 , 2 ) B ( 5 n ) ( n > 0 ) ,点 P 为线段 AB 上的一个动点,反比例函数 y = k x ( x > 0 ) 的图象经过点 P .小明说:"点 P 从点 A 运动至点 B 的过程中, k 值逐渐增大,当点 P 在点 A 位置时 k 值最小,在点 B 位置时 k 值最大."

(1)当 n = 1 时.

①求线段 AB 所在直线的函数表达式.

②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的 k 的最小值和最大值.

(2)若小明的说法完全正确,求 n 的取值范围.

来源:2020年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 3 的图象与 x 轴交于 A ( 2 , 0 ) B ( 6 , 0 ) 两点,与 y 轴交于点 C ,顶点为 E ..

(1)求这个二次函数的表达式,并写出点 E 的坐标;

(2)如图①, D 是该二次函数图象的对称轴上一个动点,当 BD 的垂直平分线恰好经过点 C 时,求点 D 的坐标;

(3)如图②, P 是该二次函数图象上的一个动点,连接 OP ,取 OP 中点 Q ,连接 QC QE CE ,当 ΔCEQ 的面积为12时,求点 P 的坐标.

来源:2020年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解答题