如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.

如图,抛物线 与 轴相交于点 和点 ,与 轴相交于点 ,作直线 .

(1)求抛物线的解析式;
(2)在直线 上方的抛物线上存在点 ,使 ,求点 的坐标;
(3)在(2)的条件下,点 的坐标为 ,点 在抛物线上,点 在直线 上.当以 , , , 为顶点的四边形是平行四边形时,请直接写出点 的坐标.
在平面直角坐标系中,抛物线 过点 , ,与 轴交于点 ,顶点为点 .
(1)求抛物线的解析式;
(2)点 为直线 上的一个动点,连接 ;
①如图1,是否存在点 ,使 ?若存在,求出所有满足条件的点 的坐标;若不存在,请说明理由;
②如图2,点 在 轴上方,连接 交抛物线于点 , ,点 在第三象限抛物线上,连接 ,当 时,请直接写出点 的坐标.

如图1,在平面直角坐标系中, 是坐标原点,抛物线 经过点 和点 .
(1)求抛物线的表达式;
(2)如图2,线段 绕原点 逆时针旋转 得到线段 .过点 作射线 ,点 是射线 上一点(不与点 重合),点 关于 轴的对称点为点 ,连接 , .
①直接写出 的形状为 ;
②设 的面积为 , 的面积为是 .当 时,求点 的坐标;
(3)如图3,在(2)的结论下,过点 作 ,交 的延长线于点 ,线段 绕点 逆时针旋转,旋转角为 得到线段 ,过点 作 轴,交射线 于点 , 的角平分线和 的角平分线相交于点 ,当 时,请直接写出点 的坐标为 .

如图1,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过点 和点 , 沿射线 方向以每秒 个单位长度的速度平移,平移后的三角形记为 (点 , , 的对应点分别为点 , , ,平移时间为 秒,射线 交 轴于点 ,交抛物线于点 ,连接 .

(1)求抛物线的解析式;
(2)当 时,请直接写出 的值;
(3)如图2,点 在抛物线上,点 的横坐标是点 的横坐标的 ,连接 , , 与 相交于点 ,当 时,求 的值.
在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 .
(1)求抛物线的表达式;
(2)如图,直线 与抛物线交于 , 两点,与直线 交于点 .若 是线段 上的动点,过点 作 轴的垂线,交抛物线于点 ,交直线 于点 ,交直线 于点 .
①当点 在直线 上方的抛物线上,且 时,求 的值;
②在平面内是否在点 ,使四边形 为正方形?若存在,请直接写出点 的坐标;若不存在,请说明理由.

如图,二次函数 的图象交 轴于点 , ,交 轴于点 .点 是 轴上的一动点, 轴,交直线 于点 ,交抛物线于点 .
(1)求这个二次函数的表达式;
(2)①若点 仅在线段 上运动,如图,求线段 的最大值;
②若点 在 轴上运动,则在 轴上是否存在点 ,使以 , , , 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点 的坐标;若不存在,请说明理由.

如图,抛物线 过点 和 .点 是抛物线的顶点,点 是 轴下方抛物线上的一点,连接 , .
(1)求抛物线的解析式;
(2)如图①,当 时,求点 的坐标;
(3)如图②,在(2)的条件下,抛物线的对称轴交 轴于点 ,交线段 于点 ,点 是线段 上的动点(点 不与点 和点 重合),连接 ,将 沿 折叠,点 的对应点为点 , 与 的重叠部分为 ,在坐标平面内是否存在一点 ,使以点 , , , 为顶点的四边形是矩形?若存在,请直接写出点 的坐标,若不存在,请说明理由.

在平面直角坐标系 中,函数 和 的图象关于 轴对称,它们与直线 分别相交于点 , .
(1)如图,函数 为 ,当 时, 的长为 ;
(2)函数 为 ,当 时, 的值为 ;
(3)函数 为 ,
①当 时,求 的面积;
②若 ,函数 和 的图象与 轴正半轴分别交于点 , ,当 时,设函数 的最大值和函数 的最小值的差为 ,求 关于 的函数解析式,并直接写出自变量 的取值范围.

如图,抛物线 与 轴交于点 ,点 ,与 轴交于点 ,抛物线的对称轴为直线 ,点 坐标为 .

(1)求抛物线表达式;
(2)在抛物线上是否存在点 ,使 ,如果存在,求出点 坐标;如果不存在,请说明理由;
(3)在(2)的条件下,若点 在 轴上方,点 是直线 上方抛物线上的一个动点,求点 到直线 的最大距离;
(4)点 是线段 上的动点,点 是线段 上的动点,点 是线段 上的动点,三个动点都不与点 , , 重合,连接 , , ,得到 ,直接写出 周长的最小值.
在平面直角坐标系中,抛物线 经过点 和点 ,与 轴交于点 ,与 轴的另一交点为点 .

(1)求抛物线的解析式;
(2)如图1,连接 ,在抛物线上是否存在点 ,使得 ?若存在,请求出点 的坐标;若不存在,请说明理由;
(3)如图2,连接 ,交 轴于点 ,点 是线段 上的动点(不与点 ,点 重合),将 沿 所在直线翻折,得到 ,当 与 重叠部分的面积是 面积的 时,请直接写出线段 的长.
如图,在平面直角坐标系中,抛物线 与 轴正半轴交于点 ,且点 的坐标为 ,过点 作垂直于 轴的直线 . 是该抛物线上的任意一点,其横坐标为 ,过点 作 于点 , 是直线 上的一点,其纵坐标为 .以 , 为边作矩形 .
(1)求 的值.
(2)当点 与点 重合时,求 的值.
(3)当矩形 是正方形,且抛物线的顶点在该正方形内部时,求 的值.
(4)当抛物线在矩形 内的部分所对应的函数值 随 的增大而减小时,直接写出 的取值范围.

在平面直角坐标系中,函数 为常数)的图象与 轴交于点 .
(1)求点 的坐标.
(2)当此函数图象经过点 时,求此函数的表达式,并写出函数值 随 的增大而增大时 的取值范围.
(3)当 时,若函数 为常数)的图象的最低点到直线 的距离为2,求 的值.
(4)设 , 三个顶点的坐标分别为 、 、 .当函数 为常数)的图象与 的直角边有交点时,交点记为点 .过点 作 轴的垂线,与此函数图象的另一个交点为 与 不重合),过点 作 轴的垂线,与此函数图象的另一个交点为 .若 ,直接写出 的值.

如图,已知点 、 , ,点 为线段 上的一个动点,反比例函数 的图象经过点 .小明说:"点 从点 运动至点 的过程中, 值逐渐增大,当点 在点 位置时 值最小,在点 位置时 值最大."
(1)当 时.
①求线段 所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的 的最小值和最大值.
(2)若小明的说法完全正确,求 的取值范围.

试题篮
()