如图,在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,有下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确结论的个数是( )
A.4
B.3
C.2
D.1
如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.
把长与宽之比为的矩形纸片称为标准纸,请思考并解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸,请给予证明;
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你探究:矩形纸片ABCD是否是一张标准纸,请说明理由;
(3)不难发现:将一张标准纸按如图3所示方式一次又一次对开后,所得的矩形纸片都是标准纸,现有一张标准纸ABCD,AB=1,,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2014次对开后所得标准纸的周长.
如图,已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图(1),当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图(1),若CB=a,CE=2a,求BM,ME的长;
(3)如图(2),当∠BCE=45°时,求证:BM=ME.
如图,在Rt△ABC中,∠ACB=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连接DE.
(1)证明:DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为( )
A. |
B. |
C.或 |
D.或 |
如图,四边形ABCD中,AB=CD,G,H分别是BC,AD的中点,BA,CD的延长线分别交GH的延长线于点E,F.猜想∠AEH与∠F的关系,并说明理由.
如图所示,在四边形ABCD中,AD∥BC,E是AD上一点,且AE=3,ED=2,BC=15,AB=8,DC=6,则AB与CD互相垂直吗?请说明理由.
如图□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,求DB′的长.
已知:如图1,一次函数的图像与x轴、y轴分别交于点A、B,与函数的图像交于点C,点C的横坐标为-3.
(1) 求点B的坐标;
(2) 若点Q为直线OC上一点,且,求点Q的坐标;
(3) 如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.
① 在图2中,只利用圆规作图找到点P的位置;
(保留作图痕迹,不得在图2中作无关元素.)
② 求点P的坐标.
我们将使得函数值为零的自变量的值称为函数的零点值,此时的点称为函数的零点.例如,对于函数,令,可得,我们就说1是函数的零点值,点是函数的零点.
已知二次函数.
(1)若函数有两个不重合的零点时,求k的取值范围;
(2)若函数的两个零点都是整数点,求整数k的值;
(3)当k<0时,在(2)的条件下,函数的两个零点分别是点A,B(点A在点B的左侧),将二次函数的图象在点A,B间的部分(含点A和点B)向左平移个单位后得到的图象记为,同时将直线向上平移个单位.请结合图象回答:当平移后的直线与图象有公共点时,求的取值范围.
如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,-3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(-1,0),则点B′的坐标为________.
在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是( )
A.两人都对 | B.两人都不对 |
C.甲对,乙不对 | D.甲不对,乙对 |
试题篮
()