先阅读下列不等式的证法,再解决后面的问题:已知,,求证.
证明:构造函数,
因为对一切,恒有≥0,所以≤0,从而得,
(1)若,,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
对、,运算“”、“”定义为:=,=,则下列各式其中恒成立的是( )
⑴ ⑵
⑶ ⑷
A.⑴、⑵、⑶、⑷ | B.⑴、⑵、⑶ |
C.⑴、⑶ | D.⑵、⑷ |
给定整数,证明:存在n个互不相同的正整数组成的集合S,使得对S的任意两个不同的非空子集A,B,数
与
是互素的合数.(这里与分别表示有限数集的所有元素之和及元素个数.)
凸边形中的每条边和每条对角线都被染为n种颜色中的一种颜色.问:对怎样的n,存在一种染色方式,使得对于这n种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形的顶点,且它的3条边分别被染为这3种颜色?
观察sin220°+cos250°+sin20°cos50°
=,sin215°+cos245°+sin15°·cos45°=,
写出一个与以上两式规律相同的一个等式 .
在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则;类比此性质,如图,在四面体P—ABC中,若PA,PB,PC两两垂直,底面ABC上的高为h,则得到的正确结论为 ;
对于定义域为的函数,若同时满足:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把函数()叫做闭函数.
(1) 求闭函数符合条件②的区间;
(2) 若是闭函数,求实数的取值范围.
如图,圆周上按顺时针方向标有五个点。一只青蛙按顺时针方向绕圆从一个点跳到另一点。若它停在奇数点上,则下一次只能跳一个点;若停在偶数点上,则跳两个点。该青蛙从这点跳起,经2008次跳后它将停在的点是( )
A. | B. | C. | D. |
平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到维向量,维向量可用表示.设,,规定向量与夹角的余弦为.当,时,=" "
A. B. C. D.
出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a,b”类比推出“若a,b”;
②“若a,b,c,d”类比推出“若a,b,c,d
则”;
③“若a,b” 类比推出“若a,b”;
其中类比结论正确的个数是 ( )
A.0 | B.1 | C.2 | D.3 |
若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2、值域为{0,4}的“同族函数”共有( )个.
A. 2 | B.3 | C.4 | D.无数 |
试题篮
()