如图,已知三棱柱ABC﹣A1B1C1的所有棱长都相等,且侧棱垂直于底面,由B沿棱柱侧面经过棱CC1到点A1的最短路线长为2,设这条最短路线与交于点D.
(1)求三棱柱ABC﹣A1B1C1的棱长;
(2)求四棱锥A1﹣BCC1B1的体积;
(3)在平面A1BD内是否存在过点D的直线与平面ABC平行?并说明理由.
将正方形ABCD沿对角线BD折叠成一个四面体ABCD,当该四面体的体积最大时,直线AB与CD所成的角为( )
A.90° | B.60° | C.45° | D.30° |
如图,将矩形ABCD沿对角线BD把△ABD折起,使A点移到A1点,且A1在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:BC⊥A1D;
(Ⅱ)求证:平面A1CD⊥平面A1BC;
(Ⅲ)若AB=10,BC=6,求三棱锥A1﹣BCD的体积.
某高速公路收费站入口处的安全标识墩如图甲所示,墩的上半部分是正四棱锥,下半部分是长方体.图乙、图丙分别是该标识墩的正视图和俯视图.
(1)画出该安全标识墩的侧视图,并标出相应的刻度;
(2)求该安全标识墩的体积.
试题篮
()