优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用
初中数学

某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形 ABCD 如图乙所示, DG = 1 米, AE = AF = x 米,在五边形 EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积 y x 的函数图象大致是 (    )

A.B.

C.D.

来源:2016年贵州省安顺市中考数学试卷
  • 题型:未知
  • 难度:未知

天水某景区商店销售一种纪念品,这种商品的成本价10元 / 件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元 / 件,市场调查发现,该商品每天的销售量 y (件 ) 与销售价 x (元 / 件)之间的函数关系如图所示.

(1)求 y x 之间的函数关系式,并写出自变量 x 的取值范围;

(2)求每天的销售利润 W (元 ) 与销售价 x (元 / 件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

来源:2019年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在正方形 ABCD ΔEFG 中, AB = EF = EG = 5 cm FG = 8 cm ,点 B C F G 在同一直线 l 上.当点 C F 重合时, ΔEFG 1 cm / s 的速度沿直线 l 向左开始运动, t 秒后正方形 ABCD ΔEFG 重合部分的面积为 Sc m 2 .请解答下列问题:

(1)当 t = 3 秒时,求 S 的值;

(2)当 t = 5 秒时,求 S 的值;

(3)当5秒 < t 8 秒时,求 S t 的函数关系式,并求出 S 的最大值.

来源:2018年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

麦积山石窟是世界文化遗产,国家 AAAAA 级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.

(1)该工艺品每件的进价、标价分别是多少元?

(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?

来源:2018年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第 x ( 1 x 30 x 为整数)的销售量为 y 件.

(1)直接写出 y x 的函数关系式;

(2)设第 x 天的利润为 w 元,试求出 w x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?

来源:2018年甘肃省兰州市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米.

(1)若苗圃园的面积为72平方米,求 x

(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;

(3)当这个苗圃园的面积不小于100平方米时,直接写出 x 的取值范围.

来源:2016年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了 x 棵橙子树.

(1)直接写出平均每棵树结的橙子个数 y (个 ) x 之间的关系;

(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?

来源:2016年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.

(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;

(2)若要平均每天盈利960元,则每千克应降价多少元?

来源:2016年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为: y = - 2 x + 140 ( 40 x < 60 ) - x + 80 ( 60 x 70 )

(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;

(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?

(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.

来源:2016年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在矩形ABCD中,动点EA出发,沿ABBC方向运动,当点E到达点C时停止运动,过点EFEAE,交CDF点,设点E运动路程为xFCy,如图2所表示的是yx的函数关系的大致图象,当点EBC上运动时,FC的最大长度是 2 5 ,则矩形ABCD的面积是(  )

A. 23 5 B.5C.6D. 25 4

来源:2017年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.

(1)直接写出书店销售该科幻小说时每天的销售量 y(本)与销售单价 x(元)之间的函数关系式及自变量的取值范围.

(2)书店决定每销售1本该科幻小说,就捐赠 a(0< a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求 a的值.

来源:2019年内蒙古通辽市中考数学试卷
  • 题型:未知
  • 难度:未知

某工厂制作 AB两种手工艺品, B每件获利比 A多105元,获利30元的 A与获利240元的 B数量相等.

(1)制作一件 A和一件 B分别获利多少元?

(2)工厂安排65人制作 AB两种手工艺品,每人每天制作2件 A或1件 B.现在在不增加工人的情况下,增加制作 C.已知每人每天可制作1件 C(每人每天只能制作一种手工艺品),要求每天制作 AC两种手工艺品的数量相等.设每天安排 x人制作 By人制作 A,写出 yx之间的函数关系式.

(3)在(1)(2)的条件下,每天制作 B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知 C每件获利30元,求每天制作三种手工艺品可获得的总利润 W(元)的最大值及相应 x的值.

来源:2019年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨 1 3 .据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.

(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?

(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?

来源:2019年内蒙古包头市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知 A(﹣3,﹣2), B(0,﹣2), C(﹣3,0), M是线段 AB上的一个动点,连接 CM,过点 MMNMCy轴于点 N,若点 MN在直线 ykx+ b上,则 b的最大值是(  )

A.

7 8

B.

3 4

C.

﹣1

D.

0

来源:2019年内蒙古包头市中考数学试卷
  • 题型:未知
  • 难度:未知

某厂商投产一种新型科技产品,每件制造成本为18元,试销过程中发现,每月销售量 y(万件)与销售单价 x(元)之间的关系可以近似地看作一次函数 y=﹣2 x+100

(1)写出每月的利润 L(万元)与销售单价 x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得312万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种科技产品的销售单价不能高于32元,如果厂商要获得每月不低于312万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

来源:2018年内蒙古兴安盟中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用试题