如图,在平面直角坐标系中完成下列各题:(不写作法,保留作图痕迹)
(1)在图1中作出关于y轴对称的,并写出、、的坐标;
(2)在图2中x轴上画出点,使的值最小.
如图,在平面直角坐标系xoy中,A(-1,5),B(-1,0),C(-4,3)。
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标。
如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、C(﹣1,0).
(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是
A.(2,1) | B.(1,2) | C.(-2,-1) | D.(-2,1) |
如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )
A.7cm | B.10cm | C.12cm | D.22cm |
在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是.
(1)将△ABC沿y轴正方向平移3个单位得到△,画出△,并写出点的坐标;
(2)画出△关于y轴对称的△,并写出点的坐标.
操作与探究
在Rt△ABC中,∠C=90°,AB=5,AC=3,点O是AB的中点,将一块直角三角板ODE的直角顶点绕点O旋转,边OD、OE分别与△ABC的边BC、AC交于点N、M.
(1)如图①,当三角板的一条直角边与AB重合时,点M与点A也重合,
①求此时CN的长;②写出AC2、CN2、BN2满足的数量关系:__________________;
图①
(2)当三角板旋转到如图②所示的位置时,即点M在AC上(不与A、C重合),
①猜想图②中AM2、BN2、MN2满足的数量关系:___________________________;
②说明你得出此结论的理由.
图②
(3)若在三角板旋转的过程中满足CM=CN,请你利用图③,求出此时BN的长.
图③
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;
(2)若EF∥CD,求∠BDC的度数.
如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有 对.
开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是 .
试题篮
()