某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) |
10 |
11 |
13 |
销售量y(kg) |
|
|
|
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是____________.
已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x |
… |
﹣1 |
0 |
1 |
2 |
3 |
… |
y |
… |
10 |
5 |
2 |
1 |
2 |
… |
则当y<5时,x的取值范围是 .
将一条抛物线向左平移2个单位后得到了y=2x2的函数图象,则这条抛物线是( )
A.y=2x2+2 | B.y=2x2-2 |
C.y=2(x-2)2 | D.y=2(x+2)2 |
二次函数(为常数且)中的与的部分对应值如下表:
给出了结论:
(1)二次函数有最小值,最小值为;
(2)若,则的取值范围为;
(3)二次函数的图象与轴有两个交点,且它们分别在轴两侧.
则其中正确结论的个数是 ( )
B. C. D.
如图:抛物线y=-+bx+c与x轴交于A、B两点,与y轴交于点C,且∠BAC=α,∠ABC=,tanα-tanβ=2,∠ACB=90°.
(1)求点C的坐标;
(2)求抛物线的解析式;
(3)若抛物线的顶点为P,求四边形ABPC的面积.
如图,抛物线经过A(,0),B(,0),C(0,2)三点.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.
已知二次函数的图象如图所示,有以下结论:
①abc>0,
②a﹣b+c<0,
③2a=b,
④4a+2b+c>0,
⑤若点(﹣2,)和(,)在该图象上,则.
其中正确的结论是 (填入正确结论的序号).
在平面直角坐标系xOy中,已知抛物线与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=.
(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG 与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由。
如图,圆心在坐标原点的⊙O的半径为1,若抛物线和⊙O刚好有三个公共点,则此时______ ,若抛物线和⊙O只有两个公共点,则c的取值范围为______.
试题篮
()