四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:
①y与x负相关且=2.347x-6.423;
②y与x负相关且=-3.476x+5.648;
③y与x正相关且=5.437x+8.493;
④y与x正相关且=-4.326x-4.578.
其中一定不正确的结论的序号是( ).
A.①② | B.②③ | C.③④ | D.①④ |
以下正确命题的个数为( )
①命题“存在,”的否定是:“不存在,”;
②函数的零点在区间内;
③ 函数的图象的切线的斜率的最大值是;
④线性回归直线恒过样本中心,且至少过一个样本点.
A. | B. | C. | D. |
已知x与y之间的一组数据(如表所示):则关于y与x的线性回归方程y=bx+a必过定点( )
A.(2,2) | B.(1.5,0) | C.(1,2) | D.(1.5,4) |
已知x与y之间的几组数据如下表:
x |
1 |
2 |
3 |
4 |
5 |
6 |
y |
0 |
2 |
1 |
3 |
3 |
4 |
假设根据上表数据所得线性回归直线方程 = x+ ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( ).
A.>b′, >a′ B.>b′, <a′
C. <b′, >a′ D.<b′, <a′
通过随机询问110名性别不同的人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:
|
男 |
女 |
总计 |
走天桥 |
40 |
20 |
60 |
走斑马线 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
由K2=,得K2=≈7.8.
附表:
P(K2≥k0) |
0.050 |
0.010 |
0.001 |
k0 |
3.841 |
6.635 |
10.828 |
参照附表,得到的正确结论 ( ).
A.有99%以上的把握认为“选择过马路的方式与性别有关”
B.有99%以上的把握认为“选择过马路的方式与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”
已知x,y取值如下表:
x |
0 |
1 |
4 |
5 |
6 |
8 |
y |
1.3 |
1.8 |
5.6 |
6.1 |
7.4 |
9.3 |
从所得的散点图分析可知:y与x线性相关,且 =0.95x+a,则a=( ).
A.1.30 B.1.45 C.1.65 D.1.80
若回归直线方程的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ).
A.=1.23x+4 | B.=1.23x+5 |
C.=1.23x+0.08 | D.=0.08x+1.23 |
假设学生在初一和初二数学成绩是线性相关的,若10个学生初一(x)和初二(y)数学分数如下:
x |
74 |
71 |
72 |
68 |
76 |
73 |
67 |
70 |
65 |
74 |
y |
76 |
75 |
71 |
70 |
76 |
79 |
65 |
77 |
62 |
72 |
则初一和初二数学分数间的回归方程是 ( ).
A. =1.218 2x-14.192 B.=14.192x+1.218 2
C. =1.218 2x+14.192 D. =14.192x-1.218 2
已知回归直线的斜率的估计值为,样本点的中心为,则回归直线方程为
A. | B. |
C. | D. |
已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为
A. | B. |
C. | D. |
某产品在某零售摊位上的零售价x(元)与每天的销售量y(个)统计如下表:据上表可得回归直线方程=b+a中的b=-4,据此模型预计零售价定为15元时,销售量为 ( )
A.48 | B.49 | C.50 | D.51 |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程,表中有一个数据模糊不清,请你推断出该数据的值为( )
A.75 | B.62 | C.68 | D.81 |
对具有线性相关关系的变量,测得一组数据如下表:
x |
2 |
4 |
5 |
6 |
8 |
y |
20 |
40 |
60 |
80 |
100 |
根据上表,利用最小二乘法得到它们的回归直线方程为.据此模型预测时,的估计值为( )
A. 320 B. 320.5 C. 322.5 D. 321.5
某小卖部销售一品牌饮料的零售价(元/瓶)与销量(瓶)的关系统计如下:
零售价(元/瓶) |
||||||
销量(瓶) |
50 |
44 |
43 |
40 |
35 |
28 |
已知的关系符合线性回归方程,其中,.当单价为元时,估计该小卖部销售这种品牌饮料的销量为 ( )
A. B. C. D.
某车间加工零件的数量与加工时间的统计数据如表:
零件数(个) |
10 |
20 |
30 |
加工时间(分钟) |
21 |
30 |
39 |
现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )
A、84分钟 B、94分钟 C、102分钟 D、112分钟
试题篮
()