某商店经营一批进价为每件4元的商品,在市场调查时得到,此商品的销售单价x与日销售量y之间的一组数据满足:,,,
,则当销售单价x定为(取整数) 元时,日利润最大.
下列命题中正确的为 .(填上你认为正确的所有序号)
(1)用更相减损术求295和85的最大公约数时,需要做减法的次数是12;
(2)利用语句X=A,A=B,B=X可以实现交换变量A,B的值;
(3)用秦九韶算法计算多项式在时的值时,的值为;
(4)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变。
某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39[ |
54 |
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元
一项研究要确定是否能够根据施肥量预测作物的产量。这里的预报释变量是( )
A.作物的产量 | B.施肥量 |
C.试验者 | D.降雨量或其他解释产量的变量 |
通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
|
男 |
女 |
总计 |
爱好 |
40 |
20 |
60 |
不爱好 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
由算得,.
0.050 |
0.010 |
0.001 |
|
3.841 |
6.635 |
10.828 |
参照附表,得到的正确结论是( )
A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
若由资料可知y对x呈线性相关关系,则y与x的线性回归方程=bx+a必过的点是
A.(2,2) | B.(1,2) | C.(3,4) | D.(4,5) |
已知变量呈线性相关关系,回归方程为,则变量是( )
A.线性正相关关系 | B.由回归方程无法判断其正负相关 |
C.线性负相关关系 | D.不存在线性相关关系 |
(本小题满分13分)
某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:
2 |
4 |
5 |
6 |
8 |
|
30 |
40 |
60 |
50 |
70 |
(Ⅰ)求回归直线方程;
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的
绝对值不超过5的概率。
(参考数据: ,
参考公式:回归直线方程,其中 )
(本小题满分12分)
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测:生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考公式:,其中)
.以下是粤西地区某县搜集到的新房屋的销售价格和房屋的面积的数据:
(1)画出数据散点图;
(2)由散点图判断新房屋销售价格y和房屋面积x是否具有线性相关关系?若有,求线性回归方程。(保留四位小数)
(3)根据房屋面积预报销售价格的回归方程,预报房屋面积为时的销售价格。
参考公式: ,
参考数据:,
,
容量为100的样本数据,按从小到大的顺序分为8组,如下表:
第三组的频数和频率分别是 ( )
A.和0.14 | B.和 | C.14和0.14 | D.0.14和14 |
某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人的一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”。对此利用2×2列联表计算得χ2≈3.918,经查对临界值表知P(χ2≥3.841)≈0.05。对此四名同学做出了如下的判断:
①有95%的把握认为“这种血清能起到预防感冒的作用”;②如果某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%; ④这种血清预防感冒的有效率为5%;
其中判断正确的序号是 。
试题篮
()