(本小题满分12分)品厂为了检查甲、乙两条自动包装流水线的生产情况,在这两条
流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]
的产品为合格品,否则为不合格品,表1是甲流水线样本频数分布表,图1是乙流水线样
本的频率分布直方图。
某食
(1)若检验员不小心将甲、乙两条流水线生产的重量值在(510,515]的产品放在了一起,
然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率;
(2)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量
与两条自动包装流水线的选择有关”。
|
甲流水线 |
乙流水线 |
合 计 |
合格品 |
a= |
b= |
|
不合格品 |
c= |
d= |
|
合 计 |
|
|
n= |
为了比较注射
两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随即地分成两组。每组100只,其中一组注射药物
,另一组注射药物
.下表1和表2分别是注射药物A和药物B后的实验结果。(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表
表2:注射药物 后皮肤疱疹面积的频数分布表
(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(Ⅱ)完成下面
列联表,并回答能否有99.9%的把握认为"注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异".
表3:
在数学趣味知识培训活动中,甲、乙两名学生的5次培训成绩如下茎叶图所示:
(1)从甲、乙两人中选择1人参加数学趣味知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(2) 从乙的5次培训成绩中随机选择2个,试求选到121分的概率.
为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
收入
(万元) |
8.2 |
8.6 |
10.0 |
11.3 |
11.9 |
支出
(万元) |
6.2 |
7.5 |
8.0 |
8.5 |
9.8 |
根据上表可得回归直线方程
,其中
,据此估计,该社区一户收入为15万元家庭年支出为( )
A. |
11.4万元 |
B. |
11.8万元 |
C. |
12.0万元 |
D. |
12.2万元 |
某班的全体学生参加消防安全知识竞赛,成绩的频率分布直方图如图,数据的分组依次为:
[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是 .
由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料算得如下结果,,,,.
(1)求所支出的维修费y对使用年限x的线性回归方程;
(2)①判断变量x与y之间是正相关还是负相关;
②当使用年限为8年时,试估计支出的维修费是多少.
(附:在线性回归方程中,),,其中,为样本平均值.)
由于工业化城镇化的推进,大气污染日益加重,空气质量逐步恶化,雾霾天气频率增大,大气污染可引起心悸、胸闷等心脏病症状.为了解某市患心脏病是否与性别有关,在某医院心血管科随机的对入院50位进行调查得到了如下列联表:问有多大的把握认为是否患心脏病与性别有关. 答:.
A.95% | B.99% | C.99.5% | D.99.9% |
|
患心脏病 |
不患心脏病 |
合计 |
男 |
20 |
5 |
25 |
女 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
参考临界值表:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
K |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式: 其中n =" a" + b + c + d).
假设关于某设备的使用年限和所支出的维修费用(万元),有如下的统计资料:
使用年限 |
2 |
3 |
4 |
5 |
6 |
维修费用 |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
若由资料知道对呈线性相关关系.
附:
试求:
(1)线性回归方程的回归系数.
(2)估计使用年限为10年时,维修费用是多少?
设有一个直线回归方程为,则变量增加一个单位( )
A.y平均增加 1.5 个单位 |
B.y 平均增加 2 个单位 |
C.y 平均减少 1.5 个单位 |
D.y 平均减少 2 个单位 |
试题篮
()