经过对的统计量的研究,得到了若干个临界值,当时,我们
A.有95%的把握认为与有关. | B.有99%的把握认为与有关 |
C.没有充分理由说事件与有关 | D.有97.5%的把握认为与有关 |
某种产品的广告费用支出万元与销售额万元之间有如下的对应数据:
2 |
4 |
5 |
6 |
8 |
|
20 |
30 |
50 |
50 |
70 |
(1)根据上表提供的数据,求出y关于x的线性回归方程;
(2)据此估计广告费用为10万元时,所得的销售收入.
(,)
根据一组样本数据(x1,y1),(x2,y2),…,(xn,yn)的散点图分析存在线性相关关系,求得其回归方程=0.85x-85.7,则在样本点(165,57)处的残差为( )
A.54.55 | B.2.45 | C.3.45 | D.111.55 |
某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称 |
A |
B |
C |
D |
E E |
销售额(x)/千万元 |
3 |
5 |
6 |
7 |
9 9 |
利润额(y)/百万元 |
2 |
3 |
3 |
4 |
5 |
(1)画出销售额和利润额的散点图.(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.
已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( )
A.=1.23x+4 | B.=1.23x+5 |
C.=1.23x+0.08 | D.=0.08x+1.23 |
根据如图样本数据得到的回归方程为=bx+a,若样本点的中心为.则当x每增加1个单位时,y就( )
A.增加1.4个单位 | B.减少1.4个单位 |
C.增加7.9个单位 | D.减少7.9个单位 |
四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:
①与负相关且; ②与负相关且;
③与正相关且; ④与正相关且.
其中一定不正确的结论的序号是( )
A.①② | B.②③ | C.③④ | D.①④ |
下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为( )
A.4 | B.3.15 | C.4.5 | D.3 |
已知有线性相关关系的两个变量建立的回归直线方程为,方程中的回归系数 ( )
A.可以小于0 | B.只能大于0 | C.可以为0 | D.只能小于0 |
为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:
|
理科 |
文科 |
男 |
13 |
10 |
女 |
7 |
20 |
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.
根据表中数据,得到k=≈4.844.
则认为选修文科与性别有关系出错的可能性为________.
已知x与y之间的一组数据(如表所示):则关于y与x的线性回归方程y=bx+a必过定点( )
A.(2,2) | B.(1.5,0) | C.(1,2) | D.(1.5,4) |
某种产品的广告费支出x与销售额y之间有如下对应数据(单位:百万元).
x |
2 |
4 |
5 |
6 |
8 |
y |
30 |
40 |
60 |
t |
70 |
根据上表提供的数据,求出y关于x的线性回归方程为 =6.5x+17.5,则表中t的值为________.
已知x与y之间的几组数据如下表:
x |
1 |
2 |
3 |
4 |
5 |
6 |
y |
0 |
2 |
1 |
3 |
3 |
4 |
假设根据上表数据所得线性回归直线方程 = x+ ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( ).
A.>b′, >a′ B.>b′, <a′
C. <b′, >a′ D.<b′, <a′
试题篮
()