经过对的统计量的研究,得到了若干个临界值,当时,我们
A.有95%的把握认为与有关. | B.有99%的把握认为与有关 |
C.没有充分理由说事件与有关 | D.有97.5%的把握认为与有关 |
某种产品的广告费用支出万元与销售额万元之间有如下的对应数据:
2 |
4 |
5 |
6 |
8 |
|
20 |
30 |
50 |
50 |
70 |
(1)根据上表提供的数据,求出y关于x的线性回归方程;
(2)据此估计广告费用为10万元时,所得的销售收入.
(,)
已知x与y之间的几组数据如下表:
x |
1 |
2 |
3 |
4 |
5 |
6 |
y |
0 |
2 |
1 |
3 |
3 |
4 |
假设根据上表数据所得线性回归直线方程 = x+ ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( ).
A.>b′, >a′ B.>b′, <a′
C. <b′, >a′ D.<b′, <a′
某产品的广告费用与销售额的统计数据如下表:
广告费用(万元) |
4 |
2 |
3 |
5 |
销售额(万元) |
49 |
26 |
39 |
54 |
根据上表数据预计广告费用为6万元时,销售额为( )
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元
下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为( )
A.4 | B.3.15 | C.4.5 | D.3 |
用餐时客人要求:将温度为、质量为的同规格的某种袋装饮料加热至.服务员将袋该种饮料同时放入温度为、质量为的热水中,分钟后立即取出.设经过分钟饮料与水的温度恰好相同,此时,该饮料提高的温度与水降低的温度满足关系式,则符合客人要求的可以是( )
A. | B. | C. | D. |
在2013年3月15日这天,郑州市物价部门对本市5家商场某商品一天的销售量及其价格进行了调查,5家商场某商品的销售价格x(元)与销售量y(件)之间的一组数据如下表:
价格x |
9 |
9.5 |
10 |
10.5 |
11 |
销售量y |
11 |
10 |
8 |
6 |
5 |
作出散点图,可知销售量y与价格x之间具有线性相关关系,其线性回归方程是=-3.2x+则实数的值是________.
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如右数据:
单价(元) |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销量 (件) |
90 |
84 |
83 |
80 |
75 |
68 |
由表中数据,求得线性回归方程为.若在这些样本点中任取一点,则它在回归直线左下方的概率为_______.
为了调查某地居民的年收入x(单位:万元)和年饮食支出y(单位:万元)之间的关系,用分层抽样的方法从该地调查了若干户家庭,调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程为=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出增加________万元.
假设学生在初一和初二数学成绩是线性相关的,若10个学生初一(x)和初二(y)数学分数如下:
x |
74 |
71 |
72 |
68 |
76 |
73 |
67 |
70 |
65 |
74 |
y |
76 |
75 |
71 |
70 |
76 |
79 |
65 |
77 |
62 |
72 |
则初一和初二数学分数间的回归方程是 ( ).
A. =1.218 2x-14.192 B.=14.192x+1.218 2
C. =1.218 2x+14.192 D. =14.192x-1.218 2
已知有线性相关关系的两个变量建立的回归直线方程为,方程中的回归系数 ( )
A.可以小于0 | B.只能大于0 | C.可以为0 | D.只能小于0 |
下列反映两个变量的相关关系中,不同于其它三个的是
A.名师出高徒 | B.水涨船高 | C.月明星稀 | D.登高望远 |
试题篮
()