设点C在线段AB上(端点除外),若C分AB的比,则得分点C的坐标公式,对于函数上任意两点,,线段AB必在弧AB上方.由图象中的点C在点C′正上方,有不等式成立.对于函数的图象上任意两点,,类比上述不等式可以得到的不等式是_________ .
对大于或等于2的自然数 m的n 次方幂有如下分解方式:
22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.
根据上述分解规律,若n2=1+3+5+ +19, m3(m∈N*)的分解中最小的数是21,则m+n的值为________.
已知边长分别为a、b、c的三角形ABC面积为S,内切圆O半径为r,连接OA、OB、OC,则三角形OAB、OBC、OAC的面积分别为、、,由得,类比得四面体的体积为V,四个面的面积分别为,则内切球的半径R=_________________
设函数f(x)= (x>0)
观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,
f4(x)=f(f3(x))=, 根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=________.
观察分析下表中的数据:
多面体 |
面数() |
顶点数() |
棱数() |
三棱锥 |
5 |
6 |
9 |
五棱锥 |
6 |
6 |
10 |
立方体 |
6 |
8 |
12 |
猜想一般凸多面体中,所满足的等式是_________.
根据下面一组等式:
S1=1;
S2=2+3=5;
S3=4+5+6=15;
S4=7+8+9+10=34;
S5=11+12+13+14+15=65;
S6=16+17+18+19+20+21=111;
S7=22+23+24+25+26+27+28=175;
……
可得________.
古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数,第个三角形数为.记第个边形数为(),以下列出了部分边形数中第个数的表达式:
三角形数 正方形数
五边形数 六边形数
可以推测的表达式,由此计算 .
蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂
巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,
以表示第幅图的蜂巢总数,则=_______.
设ΔABC的三边长分别为、、,ΔABC的面积为,则ΔABC的内切圆半径为,
将此结论类比到空间四面体:设四面体S—ABCD的四个面的面积分别为,,,,
体积为,则四面体的内切球半径= .
椭圆的标准方程为(),圆的标准方程,即,类比圆的面积推理得椭圆的面积 。
试题篮
()