优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 合情推理和演绎推理 / 填空题
高中数学

观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第n个等式为__________________________________________________.

  • 题型:未知
  • 难度:未知

凸函数的性质定理为:如果函数在区间上是凸函数,则对于区间内的任意,有,已知函数在区间上是凸函数,则在中,的最大值为________.

  • 题型:未知
  • 难度:未知

在△ABC中,若D为BC 的中点,则有,将此结论类比到四面体中,在四面体 A-BCD中,若G为△BCD的重心,则可得一个类比结论:     

  • 题型:未知
  • 难度:未知

设函数f(x)=(x>0),观察:f1(x)=f(x)=, f2(x)=f(f1(x))=, f3(x)=f(f2(x))=, f4(x)=f(f3(x))=……根据以上事实,由归纳推理可得:当n∈N*, n≥2时,fn(x)=f(n-1(x))=            

  • 题型:未知
  • 难度:未知

的三边长分别为的面积为,内切圆半径为,则;类比这个结论可知:四面体的四个面的面积分别为,内切球的半径为,四面体的体积为,则         .

  • 题型:未知
  • 难度:未知

对于实数表示不超过的最大整数,观察下列等式:

按照此规律第个等式的等号右边的结果为              

  • 题型:未知
  • 难度:未知

已知点是函数的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论成立.运用类比思想方法可知,若点是函数的图象上任意不同两点,则类似地有_________________成立.

  • 题型:未知
  • 难度:未知

古希腊毕达哥拉斯学派的数学家研究过各种多边形数。如三角形数1,3,6,10,第n个三角形数为. 记第n个k边形数为N(n,k)(,以下列出了部分k边形数中第n个数的表达式:
三角形数            
四边形数            
五边形数            
六边形数            
……
可以推测的表达式,由此计算的值为_____________.

  • 题型:未知
  • 难度:未知

如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则(1)按网络运作顺序第n行第1个数字(如第2行第1个数字为2,第3行第1个数字为4,…)是________;(2)第63行从左至右的第4个数字应是________.

  • 题型:未知
  • 难度:未知

古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第个三角形数为.记第边形数为,以下列出了部分边形数中第个数的表达式:
三角形数    
正方形数     
五边形数     
六边形数     
……
可以推测的表达式,由此计算        

  • 题型:未知
  • 难度:未知

分形是几何学是美籍法国数学家伯努瓦·曼德尔布罗(BenoitMandelbrot)在20世纪70年代创立的一门新学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照下图1的分形规律可得到如图2所示的一个树形图,则当时,第行空心圆点个数与第行及第行空心圆点个数的关系式为________;第12行的实心圆点的个数是_______.

  • 题型:未知
  • 难度:未知

如图.小正六边形沿着大正六边形的边按顺时针方向滚动,小正六边形的边长是大正六边形的边长的一半.如果小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,在这个过程中,向量围绕着点旋转了角,其中为小正六边形的中心,则        .

  • 题型:未知
  • 难度:未知

对于实数表示不超过的最大整数,观察下列等式:

按照此规律第个等式的等号右边的结果为              

  • 题型:未知
  • 难度:未知

,当时,观察下列等式:
, ,可以推测          

  • 题型:未知
  • 难度:未知

成等差数列时,有成等差数列时,有成等差数列时,有由此归纳,当 成等差数列时,有.如果成等比数列,类比上述方法归纳出的等式为______________.

  • 题型:未知
  • 难度:未知

高中数学合情推理和演绎推理填空题