设a,b是两个实数,给出下列条件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一个大于1”的条件是______.(填序号)
古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第个三角形数为.记第个边形数为,以下列出了部分边形数中第个数的表达式:
三角形数
正方形数
五边形数
六边形数
……
可以推测的表达式,由此计算 .
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点,且法向量为的直线(点法式)方程为,化简得.类比以上方法,在空间直角坐标系中,经过点,且法向量为的平面(点法式)方程为 .
如图,在等腰直角三角形中,斜边,过点作的垂线,垂足为;过点作的垂线,垂足为;过点作的垂线,垂足为;…,以此类推,设,,,…,,则________.
面积为的平面凸四边形的第条边的边长记为 ,此四边形内任一点到第条边的距离为,若,则;根据以上性质,体积为的三棱锥的第个面的面积为,此三棱锥内任一点到个面的距离为,若,则 .
在平面直角坐标系上,设不等式组所表示的平面区域为,记内的整点(即横坐标和纵坐标均为整数的点)的个数为.则= ,经猜想可得到= .
求“方程的解”有如下解题思路:设,则在上单调递减,且,所以原方程有唯一解.类比上述解题思路,方程的解为 .
将演绎推理“函数的图像是一条直线.”恢复成完全的三段论形式,其中大前提是 .
把正整数按照下面的表格进行排列
1 |
3 |
6 |
10 |
15 |
21 |
|
2 |
5 |
9 |
14 |
20 |
|
|
4 |
8 |
13 |
19 |
|
|
|
7 |
12 |
18 |
|
|
|
|
11 |
17 |
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
则排在第6行,第4列的数是_______________;
排在第行,第列()的数是______________
.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,回答如下.
甲说:丙没有考满分;乙说:是我考的;丙说:甲说的是真话.
事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是 .
试题篮
()