类比下列平面内的三个结论所得的空间内的结论成立的是
①平行于同一直线的两条直线平行;
②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;
③如果一条直线与两条平行直线中的一条相交,则必与另一条相交.
A.①②③ | B.①③ | C.① | D.②③ |
设a,b,c是空间三条直线,,是空间两个平面,则下列命题中,逆命题不成立的是( )
A.当c⊥时,若c⊥,则∥ |
B.当时,若b⊥,则 |
C.当,且c是a在内的射影时,若b⊥c,则a⊥b |
D.当,且时,若c∥,则b∥c |
(本小题满分12分)如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.
(1)求证:;
(2)若平面,侧棱上是否存在一点,使得平面,若存在,确定点的位置;若不存在,试说明理由.
如图,在三棱锥中,△PAB和△CAB都是以AB为斜边的等腰直角三角形,若,D是PC的中点.
(1)证明:;
(2)求AD与平面ABC所成角的正弦值.
设为两条不同的直线,为两个不同的平面,下列命题中为真命题的是( )
A.若,则 |
B.若,则 |
C.若,则 |
D.若,则 |
如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列三个说法中正确的个数是( )
①存在点E使得直线SA⊥平面SBC
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行
A.0 | B.1 | C.2 | D.3 |
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB⊥平面BEF;
(Ⅱ)设PA=k•AB,且二面角E﹣BD﹣C的平面角大于45°,求k的取值范围.
如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E﹣BD﹣C的大小为45°时,试判断点E在SC上的位置,并说明理由.
(本小题12分)
如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC,D、E、F分别为棱AB、BC、A1C1的中点。
(Ⅰ)证明:EF//平面A1CD;
(Ⅱ)证明:平面A1CD⊥平面ABB1A1。
(本小题满分14分)如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2.求证:
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
试题篮
()