如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点。
(1)求证:EF⊥PD;
(2)求直线PF与平面PBD所成的角的大小;
(3)求二面角E-PF-B的大小。
给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,为真命题的是 ( )
A.①和② | B.②和③ | C.③和④ | D.②和④ |
如图,已知平面,,,
且是的中点,.
(1)求证:平面;
(2)求证:平面平面;
(3)求此多面体的体积.
设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________.
①若l⊥m,m⊥α,则l⊥α或 l∥α
②若l⊥γ,α⊥γ,则l∥α或 lα
③若l∥α,m∥α,则l∥m或 l与m相交
④若l∥α,α⊥β,则l⊥β或lβ
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.
(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.
如图是棱长为的正方体的平面展开图,则在原正方体中,
①平面;
②平面;
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____ ____。 (写出所有正确命题的序号)
(本小题满分12分)如图,在四棱锥P-ABCD中,PD^平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.
(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC^平面PBD.
试题篮
()