如图,在多面体中,四边形是菱形,相交于点,,,平面平面,,点为的中点.
(1)求证:直线平面;
(2)求证:直线平面.
(本小题满分13分)如图,三棱柱中,,,.
(1)证明:;
(2)若,,求二面角的余弦值.
如图,在三棱锥中,底面,,,分别是的中点,在上,且.
(1)求证:平面;
(2)在线段上上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
(本小题满分12分)已知四棱锥,侧面底面,侧面为等边三角形,底面为菱形,且.
(1)求证:;
(2)求平面与平面所成的角(锐角)的余弦值.
(本小题满分14分)
如图6,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,直线平面.
(1)证明:;
(2)在上是否存在一点,使得∥平面,若存在,请确定点的位置,并证明之;若不存在,请说明理由;
(3)求点到平面的距离.
(本小题满分13分)
如图5,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,平面,点是的中点.
(1)求二面角的余弦值.
(2)求点到平面的距离.
如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.
(1)请在木块的上表面作出过的锯线,并说明理由;
(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.
(本小题满分14分)如图,在四棱柱中,底面,,,且,. 点E在棱AB上,平面与棱相交于点F.
(Ⅰ)求证:∥平面;
(Ⅱ)求证: 平面;
(Ⅲ)写出三棱锥体积的取值范围. (结论不要求证明)
(本小题满分14分)如图,在四棱锥中,底面为平行四边形,,为的中点,底面.
(1)求证:平面;
(2)在线段上是否存在一点,使得平面?若存在,写出证明过程;若不存在,请说明理由.
(本小题12分)如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点.
(1)求证:AF//平面BCE;
(2)求证:平面BCE⊥平面CDE.
(本小题满分12分)如图1,在Rt中,,.D、E分别是上的点,且,将沿折起到的位置,使,如图2.
(Ⅰ)求证:平面平面;
(Ⅱ)若,求与平面所成角的余弦值;
(Ⅲ)当点在何处时,的长度最小,并求出最小值.
试题篮
()