(本小题满分12分)如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:BD⊥FG;
(2)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且设面面MPQ=,则下列结论中不成立的是( )
A.面ABCD
B.AC
C.面MEF与面MPQ不垂直
D.当x变化时,不是定直线
(本小题满分12分)如图所示,在四棱锥中,底面ABCD为菱形,,Q为AD的中点.
(Ⅰ)若,求证:平面平面;
(Ⅱ)点M在线段PC上,二面角为,若平面平面ABCD,且,
求三棱锥的体积.
如图,在正三棱柱ABC-A1B1C1中,A1A=AC,D,E,F分别为线段AC,A1A,C1B的中点.
(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.
(本小题满分12分)如图,已知是圆的直径,,是⊙上一点,且,,,是的中点,是的中点
(1)求证:平面;
(2)求证:平面;
(3)求与平面所成角的大小
(本小题满分14分) 如图所示,平面平面,且四边形为
正方形,,∥,,为的中点.
(1)求证:∥平面;
(2)求证:平面;
(3)求平面与平面所成锐二面角的余弦值.
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:BN⊥平面C1B1N;
(2)求点
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:BN⊥平面C1B1N;
(2)求二面角的正弦值
(本小题14分)已知四面体中,,平面平面,分别为棱和的中点。
(1)求证:平面;
(2)求证:;
(3)若内的点满足∥平面,设点构成集合,试描述点集的位置(不必说明理由)
如图,△ABC的外接圆⊙O的半径为5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,.
(1)求证:平面AEC⊥平面BCED;
(2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.
试题篮
()