(本小题满分13分)如图,在三棱柱ABC-A1B1C1中,已知侧面, BC=1,AB=BB1=2,∠BCC1=.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)P是线段上的动点,当平面平面时,求线段的长;
(Ⅲ)若E为的中点,求二面角平面角的余弦值.
(本小题满分12分)如图,边长为2的正方形ABCD中,E是边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点,将及折起,使A、C重合于点,构成如图所示的几何体.
(Ⅰ)求证:;
(Ⅱ)若∥平面,求三棱锥的体积.
如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.
求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE 的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.
(本小题满分12分)在棱长为2的正方体中,设是棱的中点。
(1)求证:;
(2)求证:平面;
(3)求三棱锥的体积.
如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD, 则下列结论中不正确的是( )
A.AC⊥SB |
B.AB∥平面SCD |
C.AB与SC所成的角等于DC与SA所成的角 |
D.SA与平面SBD所成的角等于SC与平面SBD所成的角 |
(本小题满分14分)如图,在矩形中,,分别为线段、的中点,⊥平面.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(本小题满分14分)如图,在四棱锥中,面,四边形是正方形,是的中点,是的中点
(1)求证:面;
(2)求证:面.
如图,在四棱锥中,底面是菱形,且.
(1)求证:;
(2)若平面与平面的交线为,求证:.
(本小题13分)如图,在直三棱柱ABC-A1B1C1中,,点E、F、G分别是AA1、
AC、BB1的中点,且CG⊥C1G .
(1)求证:CG//面BEF;
(2)求证:面BEF⊥面A1C1G .
(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.
(1)求证:平面AB1C1⊥平面AC1;
(2)若AB1⊥A1C,求线段AC与AA1长度之比;
(3)若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
(本小题满分12分)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC.
(1)求证:平面MOE∥平面PAC;
(2)求证:平面PAC⊥平面PCB;
(3)设二面角M-BP-C的大小为θ,求的值.
如图,底面是正三角形的直三棱柱中,D是BC的中点,.
(Ⅰ)求证:平面;
(Ⅱ)求的A1 到平面的距离.
如图,在四棱锥中,底面是边长为2的菱形,E、F分别是PB、CD的中点,且.
(1)求证:;
(2)求证:;
(3)求二面角的余弦值.
试题篮
()