优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分13分)如图,在三棱柱ABC-A1B1C1中,已知侧面, BC=1,AB=BB1=2,∠BCC1=.

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)P是线段上的动点,当平面平面时,求线段的长;
(Ⅲ)若E为的中点,求二面角平面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,边长为2的正方形ABCD中,E是边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点,将折起,使A、C重合于点,构成如图所示的几何体.
  
(Ⅰ)求证:
(Ⅱ)若∥平面,求三棱锥的体积

  • 题型:未知
  • 难度:未知

如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.

求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.

  • 题型:未知
  • 难度:未知

(本小题16分)四棱锥中,底面是边长为8的菱形,,若,平面⊥平面.

(1)求四棱锥的体积;
(2)求证:.

  • 题型:未知
  • 难度:未知

如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE 的中点,G是AE,DF的交点.

(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.

  • 题型:未知
  • 难度:未知

(本小题满分12分)在棱长为2的正方体中,设是棱的中点。

(1)求证:
(2)求证:平面
(3)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD, 则下列结论中不正确的是(   )

A.AC⊥SB
B.AB∥平面SCD
C.AB与SC所成的角等于DC与SA所成的角
D.SA与平面SBD所成的角等于SC与平面SBD所成的角
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在矩形中,,分别为线段的中点,⊥平面.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面⊥平面

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥中,,四边形是正方形,的中点,的中点

(1)求证:;  
(2)求证:.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是菱形,且

(1)求证:
(2)若平面与平面的交线为,求证:

  • 题型:未知
  • 难度:未知

(本小题13分)如图,在直三棱柱ABC-A1B1C1中,,点E、F、G分别是AA1
AC、BB1的中点,且CG⊥C1G .

(1)求证:CG//面BEF;   
(2)求证:面BEF⊥面A1C1G .

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1)求证:平面AB1C1⊥平面AC1
(2)若AB1⊥A1C,求线段AC与AA1长度之比;
(3)若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC;
(2)求证:平面PAC⊥平面PCB;
(3)设二面角M-BP-C的大小为θ,求的值.

  • 题型:未知
  • 难度:未知

如图,底面是正三角形的直三棱柱中,D是BC的中点,.

(Ⅰ)求证:平面
(Ⅱ)求的A1 到平面的距离.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是边长为2的菱形,E、F分别是PB、CD的中点,且.

(1)求证:
(2)求证:;
(3)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题