在如图所示的几何体中, △ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.
(Ⅰ)求证:平面DBE⊥平面ABE;
(Ⅱ)求直线BD和平面ACDE所成角的余弦值.
(本小题满分12分)
如图,已知正三棱柱各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当时,求证:;
(Ⅱ)设二面角的大小为,求的最小值.
直三棱柱中,,分别是 的中点,,为棱上的点.
(1)证明:;
(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?
若存在,说明点的位置,若不存在,说明理由.
如图,已知四棱锥,底面为菱形,平面,,分别是的中点.
(Ⅰ)证明:;
(Ⅱ)若,求二面角的余弦值.
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)求证:;
(2);
(3)设为中点,在边上求一点,使平面求.
如图所示,已知ABCD为梯形,,且,为线段PC上一点.
(1)当时,证明:;
(2)设平面,证明:
(3)在棱PC上是否存在点,使得,若存在,请确定点的位置;若不存在,请说明理由.
试题篮
()