优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分12分)如图,是正方形,平面.

(1)求证:平面
(2)若,点在线段上,且,求证:平面.

  • 题型:未知
  • 难度:未知

(本小题满分10分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA平面ABCD,,E,F分别是BC, PC的中点.

(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正 切值为,求二面角E—AF—D的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)在三棱锥P-SBC中,A,D分别为边SB,SC的中点平面PSB平面ABCD,平面PAD平面ABCD

(1)求证:PA⊥BC;
(2)若平面PAD平面PBC=,求证:

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知三棱柱ABC-A'B'C'侧棱垂直于底面,AB="AC," ∠BAC=900,点M,N分别为A'B和B'C'的中点.

(Ⅰ)证明:MN//平面AA'C'C;
(Ⅱ)设AB=AA',当A为何值时,CN⊥平面A'MN,试证明你的结论.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图1,在边长为的正方形中,,且,且分别交于点,将该正方形沿折叠,使得重合,构成图所示的三棱柱,在图中.

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在底边上有一点,使得平面,求的值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥中,底面为直角梯形,//,平面底面的中点,是棱的中点,

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图1,在梯形中,,四边形是矩形.将矩形沿折起到四边形的位置,使平面平面的中点,如图2.

(Ⅰ)求证:
(Ⅱ)求证://平面
(Ⅲ)判断直线的位置关系,并说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分14分)

如图1,在直角梯形中,,四边形是正方形.将正方形沿折起到四边形的位置,使平面平面的中点,如图2.
(1)求证:
(2)求与平面所成角的正弦值;
(3)判断直线的位置关系,并说明理由.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=,PA=,∠ABC=120°,G为线段PC上的点

(Ⅰ)证明:BD⊥面PAC
(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值
(Ⅲ)若G满足PC⊥面BGD,求的值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,PC=AB=2AD=2CD=2,E是PB的中点.

(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直线PA与平面EAC所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥P-ABCD中, 四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.

(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)已知三棱锥中,平面,中点,的中点,

(1)求证:平面
(2)求证:平面平面.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知四棱锥的底面为菱形,.

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4.

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)试在平面CDE上确定点P,使点P到直线DC、DE的距离相等,且AP与平面BEF所成的角等于30°.

  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,在四棱锥中,底面是等腰梯形, 的中点.

(Ⅰ)求证:∥平面
(Ⅱ)若
(ⅰ)求证平面平面
(ⅱ)求直线与底面成角的正弦值.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题