(本小题满分14分)如图,是边长为的等边三角形,是等腰直角三角形,,平面平面,且平面,.
(1)证明:平面;
(2)证明:.
.(本小题满分14分)如图,已知三棱锥的三条侧棱,,两两垂直,△为等边三角形, 为△内部一点,点在的延长线上,且.
(1)证明:;
(2)证明:平面平面;
(3)若,,求二面角的余弦值.
(本小题满分14分)如图,在四棱锥中,底面为直角梯形,,,平面⊥底面,为的中点,是棱上的点,,,.
(1)求证:平面⊥平面;
(2)若二面角为,设,试确定 的值.
(本小题满分12分)如图,在菱形中,,, 分别是边,的中点,,沿将△翻折到△,连接,得到如图的五棱锥.
(Ⅰ)求证:平面;
(Ⅱ)若,求二面角的大小.
如图所示,在三棱锥中,,平面⊥平面, .
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
如图所示,在三棱锥中,,平面⊥平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
如图,在三棱锥中,平面,,,、、分别为、、的中点,、分别为线段、上的动点,且有.
(1)求证:面;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
如图,在三棱锥中,平面,,,、、分别为、、的中点,、分别为线段、上的动点,且有.
(1)求证:面;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
试题篮
()