(本小题满分14分)如图,在四棱锥中,底面为平行四边形,,为的中点,底面.
(1)求证:平面;
(2)在线段上是否存在一点,使得平面?若存在,写出证明过程;若不存在,请说明理由.
(本小题满分13分)在四棱锥中,底面是正方形,与交于点,底面,为的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:;
(Ⅲ)若在线段上是否存在点,使平面?
若存在,求出 的值,若不存在,请说明理由.
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=,PA=,∠ABC=120°,G为线段PC上的点
(1)证明:BD⊥面PAC
(2)若G是PC的中点,求DG与APC所成的角的正切值
(3)若G满足PC⊥面BGD,求的值.
(本小题满分12分)如图,四棱锥P−ABCD中,底面ABCD为平行四边形,O为AC的中点,PO⊥平面ABCD,M 为PD的中点,∠ADC=45o,AD=AC =1,PO="a"
(1)证明:DA⊥平面PAC;
(2)如果二面角M−AC−D的正切值为2,求a的值.
(本小题满分10分)已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,//
(1)证明:
(2)设二面角的平面角为,求;
(3)M为AD的中点,在DE上是否存在一点P,使得MP//平面BCE?若存在,求出DP的长;若不存在,请说明理由。
(本小题满分9分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:平面BCE⊥平面CDE;
(2)求二面角B-EF-D的余弦值.
(本小题12分)如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点.
(1)求证:AF//平面BCE;
(2)求证:平面BCE⊥平面CDE.
试题篮
()