(本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.
如图所示,在长方体中,,,,为棱上一点.
(1)若,求异面直线和所成角的正切值;
(2)若,求证平面.
(本小题满分12分)
如图,四边形ACDF为正方形,平面平面BCDE,平面平面ABC,BC=2DE,DE//BC, M为AB的中点.
(I)证明:;
(II)证明:EM//平面ACDF.
(本小题满分12分)
如图,ABCD为梯形,平面ABCD,AB//CD,,E为BC中点
(I)求证:平面平面PDE;
(II)线段PC上是否存在一点F,使PA//平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.
(本小题满分12分)
如图,ABCD为梯形,平面ABCD,AB//CD,,E为BC中点,连结AE,交BD于O.
(I)平面平面PAE
(II)求二面角的大小(若非特殊角,求出其余弦即可)
如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.
(1)请在木块的上表面作出过的锯线,并说明理由;
(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.
如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.
(1)请在木块的上表面作出过的锯线,并说明理由;
(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.
(本小题满分14分)
如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.
(1)求证:;
(2)求二面角的平面角的正弦值.
在四棱锥中,底面是正方形,侧棱底面, ,点是的中点,作交于.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
(本小题满分14分)如图,在三棱锥中,,点是线段的中点,平面平面.
(1)在线段上是否存在点, 使得平面? 若存在, 指出点的位置, 并加以证明;若不存在, 请说明理由;
(2)求证:.
如图(1),为等边三角形,是以为直角顶点的等腰直角三角形且,为线段中点,将沿折起(如图2),使得线段的长度等于,对于图二,完成以下各小题:
(图1) (图2)
(1)证明:平面;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使得平面与平面垂直?若存在,请求出线段的长度;若不存在,请说明理由。
如图,一简单几何体的一个面内接于圆,分别是的中点,是圆的直径,四边形为平行四边形,且平面.
(1)求证:∥平面;
(2)若,,试求该几何体的V.
(本小题满分12分)已知在四棱锥中,底面是矩形,且,,平面,、
分别是线段、的中点.
(1)证明:;
(2)判断并说明上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分14分)三棱柱的直观图及三视图(正视图和俯视图是正方形,侧视图是等腰直角三角形)如图所示,为的中点.
(1)求证:平面;
(2)求二面角的正切值.
试题篮
()