优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分12分)
已知是矩形,平面的中点.

(1)求证:平面
(2)求直线与平面所成的角.

  • 题型:未知
  • 难度:未知

如图,在长方体中,分别是的中点,
的中点,

(Ⅰ)求证:
(Ⅱ)求二面角的大小。
(Ⅲ)求三棱锥的体积。

  • 题型:未知
  • 难度:未知

(本小题共14分)如图,四棱锥中,底面为平行四边形,⊥底面.

(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值。

  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,的交点为为侧棱上一点.

(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC

  • 题型:未知
  • 难度:未知

(本小题满分12分)   
如图,已知分别是正方形的中点,交于点都垂直于平面,且是线段上一动点.

(Ⅰ)求证:平面平面
(Ⅱ)试确定点的位置,使得平面
(Ⅲ)当中点时,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图1,在边长为的正三角形中,分别为上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结.(如图2)
 
(Ⅰ)求证:⊥平面
(Ⅱ)求直线与平面所成角的大小.

  • 题型:未知
  • 难度:未知

如图,在四棱锥PABCD中,PA底面ABCD,DAB为直角,AB‖CD,AD=CD=2AB,E、F分别为PC、CD的中点.

(Ⅰ)试证:CD平面BEF;
(Ⅱ)设PAk·AB,且二面角E-BD-C的平面角大于,求k的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图所示, 四棱锥PABCD的底面是边长为1的正方形,PA^CDPA = 1, PD=,EPD上一点,PE = 2ED

(Ⅰ)求证:PA^平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在三棱锥中,底面是边长为4的正三角形,平面,M,N分别为AB,SB的中点.

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ) 若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

  • 题型:未知
  • 难度:未知

如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。

(1)若AA1=2,求证:
(2)若AA1=3,求二面角C1—BD—C的余弦值.

  • 题型:未知
  • 难度:未知

如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成

(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,  
的取值范围,使得二面角P-AD-M为钝二面角。

  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图,四棱锥的底面是边长为的正方形,平面,点的中点.

⑴求证:平面
⑵求证:平面平面
⑶若,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分14分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)

(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小。

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,四棱锥的底面为正方形,侧棱底面,且分别是线段的中点.

(Ⅰ)求证://平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的大小.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题