四棱锥的底面是正方形,侧棱⊥底面,,是的中点.
(Ⅰ)证明//平面;
(Ⅱ)求二面角的平面角的余弦值;
(Ⅲ)在棱上是否存在点,使⊥平面?若存在,请求出点的位置;若不存在,请说明理由.
(本小题满分12分)在三棱锥中,,,平面平面,为的中点.
(1) 证明:;
(2) 求所成角的大小.
(本小题满分12分)如图,是圆的直径,点在圆上,,交于点,平面,,.
(Ⅰ)证明:;
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
如图,在四棱椎P-ABCD中,底面ABCD是边长为的正方形,且PD=,PA=PC=.
(1)求证:直线PD⊥面ABCD;
(2)求二面角A-PB-D的大小.
如图所示,在长方体中,,,,为棱上一点.
(1)若,求异面直线和所成角的正切值;
(2)是否存在这样的点使得平面?若存在,求出的长;若不存在,请说明理由.
如图,直三棱柱 , , 点 分别为 和 的中点。
(Ⅰ)证明:
∥平面
;
(Ⅱ)若二面角
为直二面角,求
的值。
如图1,在 中, , 别为 的中点,点 为线段 上的一点,将 沿 折起到 的位置,使 ,如图2.
(Ⅰ)求证: 平面 ;
(Ⅱ)求证: (Ⅲ)线段 上是否存在点 ,使 ?说明理由.
如图所示,正方形与矩形所在平面互相垂直,,点E为的中点.
(Ⅰ)求证:;
(Ⅱ)求证:;
(III)在线段AB上是否存在点,使二面角的大小为?若存在,求出
的长;若不存在,请说明理由.
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=,N为AB上一点,AB=4AN, M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
试题篮
()