(本小题满分9分)
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,点D是AB的中点.
(1)求证AC⊥BC1
(2)求证AC1∥平面CDB1
如图,四棱锥中,平面,底面是直角梯形,⊥,⊥,,为中点.
(1) 求证:平面PDC平面PAD;
(2) 求证:BE∥平面PAD;
(3)求二面角的余弦值.
在四棱锥中,,,平面,为 的中点,.
(1)求四棱锥的体积;
(2)若为的中点,求证:平面平面;
(3)求二面角的大小.
(本小题满分14分)
如图:四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°
(本小题满分16分)
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点.
(1)求的长;
(2)求的值;
(3)求证:A1B⊥C1M.
(本题共10分)
将两块三角板按图甲方式拼好,其中,,,
,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。
(1)求证:AD⊥PB;
(2)求异面直线PD与AB所成角的余弦值;
(3)求平面PAB与平面PCD所成锐二面角的大小.
在四棱锥中,底面,,,,
,是的中点.
(1) 证明:;
(2) 证明:平面;
(3) 求二面角的余弦值.
试题篮
()