优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 填空题
高中数学

如图,四面体ABCD中,O、E分别是BD、BC的中点,

(Ⅰ)求证:平面BCD;
(Ⅱ)求点E到平面ACD的距离.

  • 题型:未知
  • 难度:未知

给出下列四个命题:
①过平面外一点,作与该平面成角的直线一定有无穷多条。
②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;
③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;
④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;
其中正确的命题序号为                          

  • 题型:未知
  • 难度:未知

已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,则AB与平面ADC所成角的正弦值为         

  • 题型:未知
  • 难度:未知

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
;②是异面直线的公垂线;③当二面角是直二面角时,间的距离为;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

  • 题型:未知
  • 难度:未知

已知直线和平面,且,则的位置关系是       .

  • 题型:未知
  • 难度:未知

已知直线和平面,给出下列四个命题:

其中真命题的有________(请填写全部正确命题的序号)

  • 题型:未知
  • 难度:未知

已知是空间中两条不同的直线,是空间中三个不同的平面,则下列命题正确的序号是   
①若,则;  ②若,则
③若,则;   ④若,则

  • 题型:未知
  • 难度:未知

下面是空间线面位置关系中传递性的部分相关命题:
①与两条平行线中一条平行的平面必与另一条直线平行;
②与两条平行线中一条垂直的平面 必与另一条直线垂直;
③与两条垂直直线中一条平行的平面必与另一条直线垂直;
④与两条垂直直线中一条垂直的平面必与另一条直线平行;
⑤与两个平行平面中一个平行的直线必与另一个平面平行;
⑥与两个平行平面中一个垂直的直线必与另一个平面垂直;
⑦与两个垂直平面中一个平行的直线必与另一个平面垂直;
⑧与两个垂直平面中一个垂直的直线必与另一个平面平行.
其中正确的命题个数有________个.

  • 题型:未知
  • 难度:未知

为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
①若,则
②若,则
③若,则; 
④若,则
其中真命题的个数是      

  • 题型:未知
  • 难度:未知

下列命题中:
(1)、平行于同一直线的两个平面平行;
(2)、平行于同一平面的两个平面平行;
(3)、垂直于同一直线的两直线平行;
(4)、垂直于同一平面的两直线平行.
其中所有正确的命题有_____________。

  • 题型:未知
  • 难度:未知

已知是直线,是平面,下列命题中,正确的命题是      .(填序号)
①若垂直于内两条直线,则;  
②若平行于,则内可有无数条直线与平行;
③若m⊥n,n⊥l则m∥l; ④若,则;  

  • 题型:未知
  • 难度:未知

已知直线l⊥平面α,直线m平面β,有下列四个命题:①若α∥β,则l⊥m ;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中正确命题序号是      

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知四棱锥,侧面底面,侧面为等边三角形,底面为菱形,且

(1)求证:
(2)求平面与平面所成的角(锐角)的余弦值.

  • 题型:未知
  • 难度:未知

已知直线和平面,且,则的位置关系是        .

  • 题型:未知
  • 难度:未知

下列说法中:
①两条直线都和同一个平面平行,则这两条直线平行;
②在平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;
③一个圆绕其任意一条直径旋转180°所形成的旋转体叫做球;
④a∥b,b⊂α⇒a∥α;
⑤已知三条两两异面的直线,则存在无穷多条直线与它们都相交.
则正确的序号是        

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用填空题