优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平行线法 / 解答题
高中数学

已知是矩形,分别是线段的中点,平面
(1)求证:平面
(2)若在棱上存在一点,使得平面,求的值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,侧棱底面是棱中点.

(1)求证:平面
(2)设点是线段上一动点,且,当直线与平面所成的角最大时,求的值.

  • 题型:未知
  • 难度:未知


如图所示,四棱锥的底面是直角梯形, 底面,过的平面交,交不重合).

(Ⅰ)求证:
(Ⅱ)如果,求此时的值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.

(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面,底面是梯形,其中交于点边上的点,且,已知,

(1)求平面与平面所成锐二面角的正切;
(2)已知上一点,且平面,求的值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

  • 题型:未知
  • 难度:未知

如图,在正四棱台中,分别是的中点.

(Ⅰ)求证:平面∥平面
(Ⅱ)求二面角的余弦值的大小.
注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD,PB=PD,分别是的中点,连结

求证:(1)∥平面
(2)⊥平面

  • 题型:未知
  • 难度:未知

(本小题满分1 2分)如图,梯形中,,,且,现将分别沿翻折,使点与点重合.

(1)设面与面相交于直线,求证:
(2)试类比求解三角形的内切圆(与三角形各边都相切)半径的方法,求出四棱锥的内切球(与四棱锥各个面都相切)的半径.

  • 题型:未知
  • 难度:未知

在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.

(1)若D是AB中点,求证:AC1∥平面B1CD;
(2)当时,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在底面为平行四边形的四棱锥中,
平面,且,点的中点.

(1)求证:
(2)求证:平面
(3)求二面角的大小.

  • 题型:未知
  • 难度:未知

如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是PB的中点,点F是EB的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面

  • 题型:未知
  • 难度:未知

(本小题满分14分)在直三棱柱中,,点分别是棱的中点.

(1)求证://平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)在如图所示的空间几何体中,平面平面是边长为的等边三角形,和平面所成的角为,且点在平面上的射影落在的平分线上.

(1)求证:平面
(2)求二面角的余弦值

  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是平行四边形,平面中点,中点.

(1)求证:
(2)若面,求证:

  • 题型:未知
  • 难度:未知

高中数学平行线法解答题