优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

如图,一条螺旋线是用以下方法画成:ΔABC是边长为1的正三角形,曲线CA1A1A2A2A3分别以ABC为圆心,ACBA1CA2为半径画的弧,曲线CA1A2A3称为螺旋线旋转一圈.然后又以A为圆心AA3为半径画弧,这样画到第n圈,则所得螺旋线的长度_____________.(用π表示即可)

来源:一条螺旋线
  • 题型:未知
  • 难度:未知

设圆为坐标原点
(I)若直线过点,且圆心到直线的距离等于1,求直线的方程;
(II)已知定点,若是圆上的一个动点,点满足,求动点的轨迹方程。

  • 题型:未知
  • 难度:未知

如图,圆内有一点,过点作直线交圆于 两点.(1)当直线经过圆心时,求直线的方程;(2)当弦被点平分时,写出直线方程;(3)当直线倾斜角为时,求的面积.

来源:解析几何
  • 题型:未知
  • 难度:未知

已知动圆过定点P(1,0),且与定直线相切,点C上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于AB两点,
①求线段AB的长;
②问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;

来源:解析几何
  • 题型:未知
  • 难度:未知

已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的方程;
(2)设直线与圆相交于两点,求实数的取值范围;
(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦
存在,求出实数的值;若不存在,请说明理由.

来源:直线与圆
  • 题型:未知
  • 难度:未知

已知以点为圆心的圆与轴交于点,与轴交于点,其中为原点。
(Ⅰ)求的面积;
(Ⅱ)设直线与圆交于点,若,求圆的方程。

  • 题型:未知
  • 难度:未知

已知圆C经过两点,且在y轴上截得的线段长为,半径小于5。
(Ⅰ)求圆C的方程;
(Ⅱ)若直线,且与圆C交于点,求直线的方程。

  • 题型:未知
  • 难度:未知

已知圆和直线,直线都经过圆C外
定点A(1,0).
(Ⅰ)若直线与圆C相切,求直线的方程;
(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,
求证:为定值.

  • 题型:未知
  • 难度:未知

如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点轴的正半轴上运动,的面积为.

(Ⅰ)求线段中点的轨迹的方程;
(Ⅱ)是曲线上的动点, 轴的距离之和为,
轴的距离之积.问:是否存在最大的常数,
使恒成立?若存在,求出这个的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知椭圆与双曲线有相同的焦点,且椭圆过点
(1)求椭圆方程; 
(2)直线过点交椭圆于两点,且,求直线的方程。

  • 题型:未知
  • 难度:未知

方程的两个根可分别作为(   ).

A.一椭圆和一双曲线的离心率 B.一椭圆和一抛物线的离心率
C.两椭圆的离心率 D.两双曲线的离心率
来源:选修2——1测试题
  • 题型:未知
  • 难度:未知

已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.

  • 题型:未知
  • 难度:未知

求到两定点距离相等的点的坐标满足的条件.

  • 题型:未知
  • 难度:未知

已知抛物线y=x2-1上一定点B(-1,0)和两个动点PQ,当P在抛物线上运动时,BPPQ,则Q点的横坐标的取值范围是_________ 

  • 题型:未知
  • 难度:未知

直线l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x2-4y2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题