如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为
,且离心率等于
,过点
的直线
与椭圆相交于不同两点
,点
在线段
上。
(1)求椭圆的标准方程;
(2)设,若直线
与
轴不重合,
试求的取值范围。
(本小题满分15分)如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.
已知椭圆的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(III)设与
轴交于点
,不同的两点
在
上,且满足
求
的取值范围.
(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为A、C,
上顶点为B,过F,B,C三点作,其中圆心P的坐标为
.
(1) 若椭圆的离心率,求
的方程;
(2)若的圆心在直线
上,求椭圆的方程.
在平面直角坐标系中,两点间的“L-距离”定义为
,则平面内与
轴上两个不同的定点
的“L-距离”之和等于定值(大于
)的点的轨迹可以是( )
在平面直角坐标系中,两点间的"
距离"定义为
则平面内与
轴上两个不同的定点
的"
距离"之和等于定值(大于
)的点的轨迹可以是()
A. |
|
B. |
|
C. |
|
D. |
|
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.
试题篮
()