(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知两点、,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足.
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线于两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线于两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.
如图,已知
的两条角平分线
和
相交于
,
,
在
上,且
.
(Ⅰ)证明:
、
、
、
四点共圆;
(Ⅱ)证明:
平分
.
已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.
已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
已知平面内两定点,动点满足条件:,设点的轨迹是曲线为坐标原点。
(I)求曲线的方程;
(II)若直线与曲线相交于两不同点,求的取值范围;
(III)(文科做)设两点分别在直线上,若,记 分别为两点的横坐标,求的最小值。
(理科做)设两点分别在直线上,若,求面积的最大值。
在平面直角坐标系中,两点间的“L-距离”定义为,则平面内与轴上两个不同的定点的“L-距离”之和等于定值(大于)的点的轨迹可以是( )
在平面直角坐标系中,两点间的"距离"定义为则平面内与轴上两个不同的定点的"距离"之和等于定值(大于)的点的轨迹可以是()
A. | B. | ||
C. | D. |
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.
试题篮
()