优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余
高中数学

已知关于x的一元二次函数
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
求函数在区间[上是增函数的概率;
(2)设点()是区域内的随机点,求函数上是增函数的概率.

  • 题型:未知
  • 难度:未知

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围

  • 题型:未知
  • 难度:未知

若不等式(mx-1)[3m 2-( x + 1)m-1]≥0对任意恒成立,则实数x的值为    

  • 题型:未知
  • 难度:未知

若函数的图像关于直线x=1对称,则b=__________。

  • 题型:未知
  • 难度:未知

已知二次函数f(x)=ax2+bx+c图象的顶点为(-1,10),且方程ax2+bx+c=0的两根的平方和为12,求二次函数f(x)的表达式.

  • 题型:未知
  • 难度:未知

若二次函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,现有下列结论:①方程f(f(x))=x一定没有实数根;
②若a>0,则不等式f(f(x))>x对一切实数x都成立;
③若a<0,则必存在实数x0,使f(f(x0))>x0;
④若a+b+c=0,则不等式f(f(x))<x对一切实数都成立;
⑤函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论是    (写出所有正确结论的编号). 

  • 题型:未知
  • 难度:未知

若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数为    

  • 题型:未知
  • 难度:未知

已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,则(  )

A.∀x∈(0,1),都有f(x)>0
B.∀x∈(0,1),都有f(x)<0
C.∃x0∈(0,1),使得f(x0)=0
D.∃x0∈(0,1),使得f(x0)>0
  • 题型:未知
  • 难度:未知

函数的图象和函数的图象的交点个数是     

  • 题型:未知
  • 难度:未知

设y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,求x的取值范围.

  • 题型:未知
  • 难度:未知

对于二次函数f(x)=ax2+bx+c,有下列命题:
①若f(p)=q,f(q)=p(p≠q),则f(p+q)=-(p+q);
②若f(p)=f(q)(p≠q),则f(p+q)=c;
③若f(p+q)=c(p≠q),则p+q=0或f(p)=f(q).
其中一定正确的命题是________(写出所有正确命题的序号).

  • 题型:未知
  • 难度:未知

若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是________.

  • 题型:未知
  • 难度:未知

已知函数f(x)= (k∈R),若函数y=|f(x)|+k有三个零点,则实数k的取值范围是(  )

A.k≤2 B.-1<k<0 C.-2≤k<-1 D.k≤-2
  • 题型:未知
  • 难度:未知

设函数f(x)的定义域为D,若存在非零实数n使得对于任意xM(MD),有xnD,且f(xn)≥f(x),则称f(x)为M上的n高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是________.

  • 题型:未知
  • 难度:未知

函数f(x)=log2|x|,g(x)=-x2+2,则f(xg(x)的图象只可能是   (  ).

  • 题型:未知
  • 难度:未知

高中数学二次剩余试题