优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

设函数
(I)当时,求函数的定义域;
(II)若函数的定义域为,试求的取值范围

  • 题型:未知
  • 难度:未知

已知二次函数的图像关于直线对称,且在轴上截得的线段长为2.若的最小值为,求:
(1)函数的解析式;
(2)函数上的最小值

  • 题型:未知
  • 难度:未知

已知向量,其中.函数在区间上有最大值为4,设.
(1)求实数的值;
(2)若不等式上恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数是偶函数。
(1)求的值;
(2)设函数,其中实数。若函数的图象有且只有一个交点,求实数的取值范围。

  • 题型:未知
  • 难度:未知

已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.
(I)求f(x)的解析式;
(II)已知k的取值范围为[,+∞),则是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知二次函数满足条件,及
(1)求的解析式;
(2)求上的最值.

  • 题型:未知
  • 难度:未知

已知二次函数的图像与轴有两个不同的公共点,且有,当时,恒有
(1)试比较与c的大小;
(2)试求的取值范围;
(3)若以二次函数的图像与坐标轴的三个交点为顶点的三角形的面积为5,求的取值范围

  • 题型:未知
  • 难度:未知

销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=,Q=t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).
求:(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(2)总利润y的最大值.

  • 题型:未知
  • 难度:未知

“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:

且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

  • 题型:未知
  • 难度:未知

(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.

  • 题型:未知
  • 难度:未知

已知关于x的一元二次函数
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
求函数在区间[上是增函数的概率;
(2)设点()是区域内的随机点,求函数上是增函数的概率.

  • 题型:未知
  • 难度:未知

已知函数为实数, ).
(1)若函数的图象过点,且方程有且只有一个根,求的表达式;
(2)在(1)的条件下,当时,是单调函数,求实数的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分13分)
已知函数,设函数
(1)若,且函数的值域为,求的表达式.
(2)若上是单调函数,求实数的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)  已知函数f(x)=
(1)作出函数的图像简图,并指出函数的单调区间;
(2)若f(2-a2)>f(a),求实数a的取值范围.

  • 题型:未知
  • 难度:未知

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题