函数数列的前项和,且同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立.
(1)求函数的表达式;
(2)求数列的通项公式.
“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:
且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(本小题14分)已知函数是定义在R上的偶函数,且当≤0时,.
(1)求出的解析式;
(2)现已画出函数在y轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间和值域。
某种商品在天内每件的销售价格(元)与时间(天)的函数关系用如图表示,该商品在天内日销售量(件)与时间(天)之间的关系如下表:
(1)根据提供的图象(如图),写出该商品每件的销售价格与时间的函数关系式;
(2)根据表提供的数据,写出日销售量与时间的一次函数关系式;
(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天.(日销售金额每件的销售价格日销售量)
已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点、构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时、不重合,连接与椭圆的另一交点记为,求的取值范围.
已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函数f(x)的最小值.
(2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.
已知二次函数.
(Ⅰ)若,且在上单调递增,求实数的取值范围;
(Ⅱ)当时,有.若对于任意的实数,存在最大的实数,使得当时,恒成立,试求用表示的表达式.
试题篮
()