优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

求证:二次函数的图象与轴交于的充要条件为

  • 题型:未知
  • 难度:未知

函数数列的前项和,且同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立.
(1)求函数的表达式;    
(2)求数列的通项公式.

  • 题型:未知
  • 难度:未知

已知函数是二次函数,且满足
(1)求的解析式;
(2)若,试将的最大值表示成关于t的函数

  • 题型:未知
  • 难度:未知

若非零函数对任意实数均有,且当
(1)求证:
(2)求证:为R上的减函数;
(3)当时, 对恒有,求实数的取值范围.

  • 题型:未知
  • 难度:未知

“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:

且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

  • 题型:未知
  • 难度:未知

设函数为常数
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整数,使得对于任意均成立,若存在,求出 的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(1)已知对任意,函数的值恒大于零,求的取值范围.
(2)已知对任意,函数的值恒大于零,求的取值范围.

  • 题型:未知
  • 难度:未知

已知函数.
(1)求不等式的解集;
(2)设,其中R,求在区间上的最小值.

  • 题型:未知
  • 难度:未知

已知函数时有最大值2,求a的值.

  • 题型:未知
  • 难度:未知

(本小题14分)已知函数是定义在R上的偶函数,且当≤0时,
 
(1)求出的解析式;
(2)现已画出函数在y轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间和值域。

  • 题型:未知
  • 难度:未知

某种商品在天内每件的销售价格(元)与时间(天)的函数关系用如图表示,该商品在天内日销售量(件)与时间(天)之间的关系如下表:


(1)根据提供的图象(如图),写出该商品每件的销售价格与时间的函数关系式;
(2)根据表提供的数据,写出日销售量与时间的一次函数关系式;
(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天.(日销售金额每件的销售价格日销售量)

  • 题型:未知
  • 难度:未知

已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时不重合,连接与椭圆的另一交点记为,求的取值范围.

  • 题型:未知
  • 难度:未知

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函数f(x)的最小值.
(2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.

  • 题型:未知
  • 难度:未知

已知二次函数.
(Ⅰ)若,且上单调递增,求实数的取值范围;
(Ⅱ)当时,有.若对于任意的实数,存在最大的实数,使得当时,恒成立,试求用表示的表达式.

  • 题型:未知
  • 难度:未知

已知二次函数的二次项系数为,且不等式的解集为(1,3).
⑴若方程有两个相等实数根,求的解析式.
⑵若的最大值为正数,求实数的取值范围.

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题