优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

已知函数
(1)若在[-3,2]上具有单调性,求实数的取值范围。
(2)若有最小值为-12,求实数的值;

  • 题型:未知
  • 难度:未知

设函数
(1)当时,记函数在[0,4]上的最大值为,求的最小值;
(2)存在实数,使得当时,恒成立,求的最大值及此时的值.

  • 题型:未知
  • 难度:未知

已知函数在区间[0,1]上有最小值-2,求的值.

  • 题型:未知
  • 难度:未知

若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.
①设g(x)=x2-x+是[1,b]上的“四维光军”函数,求常数b的值;
②问是否存在常数a,b(a>-2),使函数h(x)=是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值,否则,请说明理由.

  • 题型:未知
  • 难度:未知

设不等式的解集为M,求当x∈M时函数的最大、最小值.

  • 题型:未知
  • 难度:未知

已知二次函数的图象如图.

(1)求它的对称轴与轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.

  • 题型:未知
  • 难度:未知

已知函数,设函数在区间上的最大值为
(1)若,试求出
(2)若对任意的恒成立,试求出的最大值.

  • 题型:未知
  • 难度:未知

在△中,角所对的边分别为,若是方程的两根,且;
(1)求角的大小;
(2)求边的长度;
(3)求的面积。

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)设,若上单调递增,求实数的取值范围;
(Ⅱ)求证:存在,使.

  • 题型:未知
  • 难度:未知

已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.

  • 题型:未知
  • 难度:未知

已知当x=5时,二次函数f(x)=ax2+bx取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,且bn,求Tn.

  • 题型:未知
  • 难度:未知

设不等式的解集为M.
(1)如果,求实数的取值范围;
(2)如果,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知,且两函数定义域均为
(1).画函数在定义域内的图像,并求值域;
(2).求函数的值域.

  • 题型:未知
  • 难度:未知


(1)比较的大小;
(2)解关于x的不等式:

  • 题型:未知
  • 难度:未知

已知二次函数满足,且,求:
(Ⅰ)的解析式;
(Ⅱ)上的值域.

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题