优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

(1)已知二次函数,求的单调递减区间。
(2)在区间上单调递减,求实数的取值范围。

  • 题型:未知
  • 难度:未知

(12分) 若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
且f(-2)>f(3),设m>-n>0.
(1) 试证明函数f(x)在(0,+∞)上是减函数;
(2) 试比较f(m)和f(n)的大小,并说明理由.

  • 题型:未知
  • 难度:未知

若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数是二次函数,且满足
(1)求的解析式;
(2)若,试将的最大值表示成关于t的函数

  • 题型:未知
  • 难度:未知

函数数列的前项和,且同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立.
(1)求函数的表达式;    
(2)求数列的通项公式.

  • 题型:未知
  • 难度:未知

(12分)已知函数满足.
(1)设,求的上的值域;
(2)设,在上是单调函数,求的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为.求:
(Ⅰ)求实数的取值范围;
(Ⅱ)求圆的方程;
(Ⅲ)问圆是否经过某定点(其坐标与b 无关)?请证明你的结论.

  • 题型:未知
  • 难度:未知

在△中,角所对的边分别为,若是方程的两根,且;
(1)求角的大小;
(2)求边的长度;
(3)求的面积。

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)设,若上单调递增,求实数的取值范围;
(Ⅱ)求证:存在,使.

  • 题型:未知
  • 难度:未知

已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.

  • 题型:未知
  • 难度:未知

已知当x=5时,二次函数f(x)=ax2+bx取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,且bn,求Tn.

  • 题型:未知
  • 难度:未知

已知函数
(1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值.
(2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.

  • 题型:未知
  • 难度:未知

(本小题满分13分)已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.

  • 题型:未知
  • 难度:未知


(1)比较的大小;
(2)解关于x的不等式:

  • 题型:未知
  • 难度:未知

已知二次函数满足,且,求:
(Ⅰ)的解析式;
(Ⅱ)上的值域.

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题