优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

(1)已知二次函数,求的单调递减区间。
(2)在区间上单调递减,求实数的取值范围。

  • 题型:未知
  • 难度:未知

已知函数的图像与函数h(x)=x++2的图像关于点A(0,1)对称.
(1) 求的解析式;
(2) 若,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

  • 题型:未知
  • 难度:未知

设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若G(x)=在区间[1,2]上是增函数,求实数k的取值范围。

  • 题型:未知
  • 难度:未知

已知函数
(1)若函数的定义域和值域均为,求实数的值;
(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围;

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

  • 题型:未知
  • 难度:未知

设函数,其中,区间
(Ⅰ)求的长度(注:区间的长度定义为);
(Ⅱ)给定常数,当时,求长度的最小值.

  • 题型:未知
  • 难度:未知

商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

来源:
  • 题型:未知
  • 难度:未知

在△中,角所对的边分别为,若是方程的两根,且;
(1)求角的大小;
(2)求边的长度;
(3)求的面积。

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)设,若上单调递增,求实数的取值范围;
(Ⅱ)求证:存在,使.

  • 题型:未知
  • 难度:未知

已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.

  • 题型:未知
  • 难度:未知

已知当x=5时,二次函数f(x)=ax2+bx取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,且bn,求Tn.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为.求:
(Ⅰ)求实数的取值范围;
(Ⅱ)求圆的方程;
(Ⅲ)问圆是否经过某定点(其坐标与b 无关)?请证明你的结论.

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知二次函数最大值为,且
⑴求的解析式;
⑵求上的最值.

  • 题型:未知
  • 难度:未知


(1)比较的大小;
(2)解关于x的不等式:

  • 题型:未知
  • 难度:未知

已知二次函数满足,且,求:
(Ⅰ)的解析式;
(Ⅱ)上的值域.

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题